F-960SG

ENGLISH

www.canon.com/calcmanual

Scientific Calculator Instruction

IMPORTANT: READ BEFORE USE

Please read the following instructions and safety precautions before using the Scientific Calculator. Keep this manual on hand for future reference.
CONTENTS
DISPLAY P. 3
GETTING STARTED
Power ON, OFF P. 4
Display Contrast Adjustment P. 4
Mode Selection P. 4
Calculator Set-up Menu P. 5
Before Using the Calculator P. 7
INPUTTING EXPRESSIONS AND VALUES
Input Capacity P. 8
Input Editing P. 8
Inputting and Display result in MthIO Mode P. 11
INPUT RANGE AND ERROR MESSAGE
Calculation Precision, Input Range P. 11
Order of Operations P. 14
Calculation Stacks P. 15
Error Message and Error Locator P. 15
BASIC CALCULATIONS
Arithmetic Calculations P. 16
Memory Calculations P. 17
Fraction Calculations P. 18
Percentage Calculations P. 19
Degree-Minutes-Seconds Calculations P. 20
Reply \& Multi-statements P. 20
FUNCTIONAL SCIENTIFIC CALCULATIONS
Square, Root, Cube, Cube Root, Power Root, Reciprocal and Pi P. 21
Logarithm, Natural Logarithm, Antilogarithm P. 22
Angle Unit Conversion P. 22
Trigonometry Calculations P. 23
Permutation, Combination, Factorials and Random Number Generation P. 24
Coordinate Conversion P. 25
Absolute Value Calculations P. 26
Engineering Notation P. 26
Display Values Exchange P. 27
Base-n Calculations and Logical Calculations P. 28
STATISTICAL CALCULATIONS
Statistical Type Selection P. 30
Statistical Data Input P. 30
Editing Statistical Sample Data P. 31
Statistical Calculation Screen P. 31
Statistical Menu P. 31
Statistical Calculation Example P. 33
Probability Distribution Calculation P. 35
EQUATION CALCULATIONS P. 36
BATTERY REPLACEMENT P. 38
ADVICE AND PRECAUTIONS P. 39
SPECIFICATIONS P. 40

How to Open / Close the cover

Open or close the cover by sliding as shown in the figure.

DISPLAY

$$
\begin{array}{r}
\sin \left(\frac{\pi}{4}\right)+\sqrt{2} \\
2.121320344
\end{array}
$$

<Status Indicators>

S	: Shift key
\mathbf{A}	: Alpha key
\mathbf{M}	: Independent memory
STO	: Store memory
RCL	: Recall memory
STAT	: Statistics mode
EQN	: Equation calculation mode
\mathbf{D}	: Degree mode
\mathbf{R}	: Radian mode
\mathbf{G}	: Gradient mode
FIX	: Fixed-decimal setting
SCI	: Scientific notation
LINE	: Line display mode
\mathbf{A}	: Up arrow
$\boldsymbol{\nabla}$: Down arrow
Disp	: Multi-statements display

GETTING STARTED

First time operation:

1. Pull out the battery insulation sheet, then the battery will be loaded.
2. Press $O N \stackrel{\text { Shift }}{C L R} \square \mathbf{C A}$ to reset the calculator.

Power ON: When $\mathbf{O N}$ is pressed.
Power OFF: $\stackrel{\text { shift }}{\rightleftharpoons} \stackrel{\text { off }}{\square}$ are pressed.

- Auto Power off Function:

When the calculator is not used for about 7 minutes, it will automatically power off.

Display Contrast Adjustment

\square Press $\stackrel{\text { Shift }}{\square} \stackrel{\text { SETUP }}{\square}(6: \leftharpoonup$ CONT $>)$, enter the Display Contrast Adjustment screen.

```
CONTRAST
LIGHT DARK
    [4]
    [ \]
```

Press © to make the display contrast darken.
Press © to make the display contrast lighten.
Press CA or ON to confirm and clear the screen.

- To initialize the LCD contrast, press Shift $\stackrel{\text { CLR }}{\leftrightarrows}$ =

CA outside the Display Contrast Adjustment screen.

Mode Selection

\square Press MODE to enter the Calculation Mode Selection screen.

$$
\begin{array}{ll}
1: \text { COMP } & 2: \text { STAT } \\
3: \text { BASE } & 4: \text { EQN }
\end{array}
$$

Operation	Mode		LCD Indicator	
MODE	$\mathbf{1}$	COMP	Normal calculation	
MODE	$\mathbf{2}$	STAT	Statistical calculation	STAT
MODE	$\mathbf{3}$	BASE	Calculations involving specific number systems	
MODE	$\mathbf{4}$	EQN	Equation solution	EQN

The default mode is COMP mode.

Calculator Set-up Menu

\square Press $\stackrel{\text { Shift }}{\square} \stackrel{\text { SETup }}{ }$ to enter the Calculator Set-up Menu; press - / © for next / previous page.

1: MthlO	2: Linelo ${ }^{\text {¹ }}$		1: ab/c	2: d/c
3: Deg	4: Rad		3: CPLX	4: STAT
5: Gra	6: Fix	Press	5: Disp	6: «CONT
7: Sci	8: Norm	or \wedge key		

■ To select the calculator input \& output format [1] MthIO or [2] LinelO
[1] MathIO - (Maths mode). Most of the input (e.g. Fraction, pi, square root number) are shown in Mathematics textbook format.

Maths mode

$$
\frac{\sqrt{5+1}}{3-1}
$$

1.224744871

And there are 3 "Result Format" (MathO, LineO or DecimalO) for selection. In MathO, fraction calculation result will

Result Format? $\begin{array}{ll}\text { 1: MathO } & \text { 2: LineO }\end{array}$ 3: DecimalO be shown same as Input.
In LineO, fraction calculation result will be in line format. In DecimalO, fraction calculation result will be in decimal number format. No fraction will be display.
[2] LinelO - (Line mode): The majority of calculation input and output are shown in the lines format. and "LINE" icon will be shown.

And there are 2 "Result Format" (LineO, DecimalO) for selection.

Line mode

$$
\begin{array}{r}
(5+1) \text { د(3-1) }{ }^{\text {LINE }} \\
1.224744871 \\
\hline
\end{array}
$$

Result Format?
1: LineO
2: Decimalo

For the STAT mode, the Input \& Display format will switch to LineIO mode automatically.

- To select the angle unit [3] Deg, [4] Rad or [5] Gra
[3] Deg: Angle unit in Degree
[4] Rad: Angle unit in Radian
[5] Gra: Angle unit in Gradient
$90^{\circ}=\frac{\pi}{2}$ radians $=100 \mathrm{grads}$
- To select display digit or notation [6] Fix, [7] Sci or [8] Norm
[6] Fix: Fixed Decimal, [Fix 0~9?] appears, specify the number of decimal places by pressing [0] - [9].
Example: $220 \div 7=31.4286$ (FIX 4)

$$
=31.43 \text { (FIX 2) }
$$

[7] Sci: Scientific Notation, [Sci 0~9?] appears, specify the number of significant digits by pressing [0] - [9].
Example: $220 \div 7=3.1429 \times 10^{1}(\mathrm{SCI} 5)$

$$
=3.143 \times 10^{1}(\mathrm{SCI} 4)
$$

[8] Norm: Exponential Notation, [Norm 1~2?] appears, specify the exponential notation format by pressing [1] or [2].
Norm 1: Exponential notation is automatically used for integer values with more than 10 digits and decimal values with more than TWO decimal points.

Norm 2: Exponential notation is automatically used for integer values with more than 10 digits and decimal values with more than NINE decimal places.

$$
\begin{aligned}
\text { Example: } 1 \div 1000 & =1 \times 10^{-3}(\text { Norm } 1) \\
& =0.001(\text { Norm } 2)
\end{aligned}
$$

- To select the fraction format [1] ab/c or [2] d/c
[1] a b/c: specify Mixed fraction display
[2] d/c: specify Improper fraction display
- To select the complex number display format [3] CPLX ([1] a+bi or [2] r<e)
[1] a+bi: specify Rectangular Coordinates
[2] $r<\theta$: specify Polor Coordinates

■ To select the statistical display format [4] STAT ([1] ON or [2] OFF)
[1] ON: Show FREQ (Frequency) Column in Statistical Data Input Screen
[2] OFF: Hide FREQ (Frequency) Column in Statistical Data Input Screen

- To select the decimal point display format [5] Disp ([1] Dot or [2] Comma)
[1] Dot: specify dot format for Decimal point result display
[2] Comma: specify comma format for Decimal point result display

■ To Adjust Display contrast [6] 〈CONT

 See "Display Contrast Adjustment" section.
Before Using the Calculator

- Check the current Calculation Mode

Be sure to check the status indicators that indicate the current calculation mode (COMP, STAT, BASE, EQN), display formats setting and angle unit setting (Deg, Rad, Gra)

- Return to initial setup

Pressing shift $\stackrel{\text { CLR }}{\square}$ (Setup) $=(\mathrm{Yes}) \mathbf{C A}$ to return the initial calculator setup

Calculation mode : COMP
Input/Output Format : MthiO/MathO
Angle unit : Deg
Display Digits : Norm 2
Fraction Display Format : d/c
Statistical Data Input : OFF
Decimal Point format : Dot
This action will not clear the variable memories.

- Initialize the calculator

When you are not sure of the current calculator setting, you are recommended to initialize the calculator (reset calculation mode "COMP", angle unit "Degree", and clear reply and variable memories), and LCD contrast by
pressing Shift $\stackrel{\text { CLR }}{\leftrightarrows}$ (All) $=(\mathrm{Yes})$ CA.

INPUTTING EXPRESSIONS AND VALUES

Input Capacity

F-960SG allows you to input a single calculation up to 99 bytes. Normally, one byte is used as each time you press one of the numeric keys, arithmetic keys, scientific function keys or Ans. Some functions require 4 - 13bytes.
Shift , Alpha , and the direction keys will not use up any bytes. When input capacity is less than 10bytes, the input cursor will change from " $\boldsymbol{\|}$ " to " ${ }^{\square}$ " that notifying the memory is running now.

Input Editing

\square New Input begins on the left of display. If input data are more than 15 characters, the line will scroll to the right consecutively. You can scroll back to the left by using \ll and \geqslant to review the input
\square In LinelO mode, press \star to let the cursor jump to the beginning of inputting, while will jump to the end.
\square In MthIO mode, press \odot to let the cursor jump to the beginning of inputting while it is at the end of the input calculation. Or press © to let the cursor jump to the end of inputting while it is at the beginning of the input calculation.

- Omit the multiplication sign and final close parenthesis.

Example: $2 \times \log 100 \times(1+3)=16$

$\begin{aligned} & \text { Including } x{ }^{* 1}, \\ & 1{ }^{*}{ }^{*}, 1{ }^{* 3} \end{aligned}$	Operation 1:	Display 1
		$2 \times \log (100) \times(1+3)$
	Operation 2:	Display 2
$\begin{aligned} & \text { Omitting } \boldsymbol{x}^{\star 1}, \\ & \text { Omitting } \square^{* 3} \end{aligned}$	$\begin{aligned} & 2[10900010 \square \\ & +3= \end{aligned}$	$2 \log (100)(1+3 \times$

*1. Omit multiplication sign (x)

- Input before an open parentheses 1 : $1 \underline{\mathrm{x}}(2+3)$
- Input before scientific functions that includes parenthesis: $2 \times \cos (30)$
- Input before Random number function Ran\#
- Input before Variable (A, B, C, D, X, Y, M), т, e
*2. Scientific functions come with the open parenthesis.
Example: sin(, cos(, Pol(, You need to input the argument and the close parenthesis 1
*3. Omit the last close parenthesis before the $\square, M, \stackrel{M-}{\square}$, Shift sto
- Insert and overwrite Input mode

In LinelO mode, you can use INSERT $\stackrel{\text { Insert }}{ }$ or overwrite mode for inputting.

- In Insert mode (Default input mode), the cursor is a vertical flashing line " | " for inserting a new character.
- In overwrite mode, press Shift insert key to switch the cursor to a flashing horizontal (_) and replace the character at the current cursor position.

In MthIO mode, you can only use the insert mode.
Whenever the display format changes from LineIO mode to MthIO mode, it will automatically switch to the insert mode.

\square Deleting and Correcting an Expression

In insert mode: Move the cursor to the right of the character or function that needs to be deleted, then press DEL.

In overwrite mode: Move the cursor under the character or function being deleted, then press DEL.

Example: $1234567+889900$
(1) Replace an entry (1234567 $\boldsymbol{\rightarrow}$ 1234560)

Mode Setting	Key In operation	Display (input Line only)
Method 1: LineIO/MthIO mode - Insert mode	1234567 ± 889900	12345671+889900
	© 7 times	
	DEL 0	12345601+889900
Method 2: LinelO mode - Overwrite mode	Snift setup 21	1234567+889900_
	$\begin{aligned} & 1234567 \mp 889900 \\ & \text { Shift Insert } \end{aligned}$	
	(6) 8 times	1234567+889900
	0	1234560 ± 889900

(2) Deletion (1234567 \rightarrow 134567)

Method 1: LinelO/MthIO	$@ 12$ times	$12 \mid 34567+889900$
mode - Insert mode	DEL	$1 \mid 34567+889900$
Method 2: LineIO	Shift Insert	$1234567+889900 _$
mode - Overwrite mode	$₫ 13$ times	$1 \underline{12} 34567+889900$
	DEL	$1 \underline{3} 4567+889900$

(3) Insertion (889900 $\boldsymbol{\rightarrow} \mathbf{2 8 8 9 9 0 0)}$

LineIO/MthIO mode - Insert mode	$\circledast 6$ times	$1234567+\mid 889900$
	$\mathbf{2}$	$1234567+2 \mid 889900$

Inputting and Display result in MthIO Mode

■ In MthIO Mode, the Input display of fraction or certain functions ($\log , x^{2}, x^{3}, x^{\mathbf{1}}, \sqrt{\square}, \sqrt[3]{\square}, \sqrt[1]{a}, x^{-1}, 10^{\mathbf{1}}, e^{\mathbf{4}}, A b s$) is shown in Mathematics textbook format.

Example	Key in operation	Display
$\left\|\sqrt{3}-\frac{2}{\sqrt{2}}\right\|$	Abs $\sqrt{-1}$ 3 () - 2 $-\frac{0}{\square}$ $\sqrt{-1}$ 2 $=$	$\left\|\sqrt{3}-\frac{2}{\sqrt{2}}\right\|_{0.3178372452}$

Remark

(1) Some input expressions cause the height of a calculation expression to be greater than one display screen.
Maximum input capacity: 2 display screen
(31 dots $\times 2$).
(2) Calculator memory limits how many functions or perentheses can be input in any single expression. In this case divide the expression into multiple parts and calculate separately.
(3) If part of the expression you input is cut off after calculation and in the result display screen you can press © or \otimes to view the full expression.

INPUT RANGE AND ERROR MESSAGE

Calculation Precision, Input Range

Number of Digits for Internal Calculation	Up to 18 digits
Precision*	± 1 at the 10th digit for a single calculation. ± 1 at the least significant for exponential display
Calculation Range	$\pm 1 \times 10^{-99}$ to $\pm 9.999999999 \times 10^{99}$ or 0

- Function Calculation Input Ranges

Functions	Input Range	
$\sin x$	DEG	$0 \leqq\|x\|<9 \times 10^{9}$
	RAD	$0 \leqq\|x\|<157079632.7$
	GRA	$0 \leq\|x\|<1 \times 10^{10}$
$\cos x$	DEG	$0 \leqq\|x\|<9 \times 10^{9}$
	RAD	$0 \leqq\|x\|<157079632.7$
	GRA	$0 \leqq\|x\|<1 \times 10^{10}$
$\tan x$	DEG	Same as sinx, except when $\|\mathrm{x}\|=(2 \mathrm{n}-1) \times 90$
	RAD	Same as sinx, except when $\|x\|=(2 n-1) \times \pi / 2$
	GRA	Same as sinx, except when $\|\mathrm{x}\|=(2 \mathrm{n}-1) \times 100$
$\sin ^{-1} x$	$0 \leqq\|x\| \leqq 1$	
$\cos ^{-1} x$		
$\tan ^{-1} \mathrm{x}$	$0 \leqq\|\mathrm{x}\| \leqq 9.999999999 \times 10^{99}$	
$\sinh x$	$0 \leqq\|x\| \leqq 230.2585092$	
coshx		
$\sinh ^{-1} x$	$0 \leqq\|\mathrm{x}\| \leqq 4.999999999 \times 10^{99}$	
$\cosh ^{-1} x$	$1 \leqq x \leq 4.999999999 \times 10^{99}$	
$\tanh \mathrm{x}$	$0 \leqq\|x\| \leqq 9.999999999 \times 10^{99}$	
$\tanh ^{-1} x$	$0 \leqq\|x\| \leqq 9.999999999 \times 10^{-1}$	
$\log x / \ln x$	$0<x \leqq 9.999999999 \times 10^{99}$	
10^{\square}	$-9.9999999999 \times 10^{99} \leqq x \leqq 99.99999999$	
e^{\square}	$-9.9999999999 \times 10^{99} \leqq x \leq 230.2585092$	
$\sqrt{1}$	$0 \leqq x<1 \times 10^{100}$	
x^{2}	$\|x\|<1 \times 10^{50}$	
x^{3}	$\|x\| \leq 2.15443469 \times 10^{33}$	
x^{-1}	$\|x\|<1 \times 10^{100}, x \neq 0$	
$\sqrt[3]{1}$	$\|\mathrm{x}\|<1 \times 10^{100}$	
x !	$0 \leq x \leq 69$ (x is an integer)	
$n \mathrm{Pr}$	$0 \leqq n \leqq 1 \times 10^{10}, 0 \leqq r \leqq n$ (n, r are integers)	
	$1 \leqq n!/((n-r)!) \leqq 1 \times 10^{100}$	
nCr	$0 \leqq n \leqq 1 \times 10^{10}, 0 \leqq r \leqq n(n, r$ are integers)	
	$1 \leqq n!/ r!\leqq 1 \times 10^{100}$ or $1 \leqq n!/(n-r)!<1 \times 10^{100}$	

Functions	Input Range
$\operatorname{Pol}(\mathrm{x}, \mathrm{y})$	$\begin{aligned} & \|x\|,\|y\| \leqq 9.999999999 \times 10^{99} \\ & \sqrt{x^{2}+y^{2}} \leqq 9.999999999 \times 10^{99} \end{aligned}$
$\operatorname{Rec}(\mathrm{r}, \theta)$	$0 \leqq r \leqq 9.999999999 \times 10^{99}$ θ : Same as sinx
O4\%	$\begin{aligned} & \|a\|, b, c<1 \times 10^{100} \\ & 0 \leqq b, c \end{aligned}$
$\stackrel{\Psi}{01 m}$	$\|x\| \leq 1 \times 10^{100}$ Deciaml \leftrightarrow Sexagesimal Conversions $0^{\circ} 0^{\prime} 0^{\prime \prime} \leqq\|x\| \leqq 9999999^{\circ} 59^{\prime} 59^{\prime \prime}$
$\mathrm{x}^{\mathbf{(1}}\left(\mathrm{X}^{\mathrm{y}}\right)$	$\begin{aligned} & x>0:-1 x 10^{100}<y \log x<100 \\ & x=0: y>0 \\ & x<0: y=n, m /(2 n+1)(m, n \text { are integers }) \\ & \text { However: }-1 \times 10^{100}<y \log \|x\|<100 \\ & \hline \end{aligned}$
$\sqrt[\square]{\square}(\mathrm{X} \sqrt{ } \mathrm{y})$	$\begin{aligned} & y>0: x \neq 0,-1 \times 10^{100}<1 / x \log y<100 \\ & y=0: x>0 \\ & y<0: x=2 n+1,(2 n+1) / m \quad(m \neq 0 ; m, n \text { are integers }) \end{aligned}$
■ 믐	Total of integer, numerator, and denominator must be 10 digits or less (including division marks).
Ranlnt\#(a,b)	$0 \leqq a<1 \times 10^{10}, 0 \leqq b<1 \times 10^{10}$ (a, b should be positive integers or 0)
Ran\#	Result generates a 3 digits pseudo random number(0.000~0.999)
1-variable Statistical calculation	$\begin{aligned} & \|x\|<1 \times 10^{100} \\ & \mid \text { \|FREQ } \mid<1 \times 10^{100} \end{aligned}$
2-variable Statistical calculation	$\begin{aligned} & \|x\|<1 \times 10^{100} \\ & \|y\|<1 \times 10^{100} \\ & \|F R E Q\|<1 \times 10^{100} \end{aligned}$
ABS	$\|\mathrm{x}\|<1 \times 10^{100}$
Pfact	$x \leqq 9999999999$ (positive integers)
BIN	Positive: 0 ~ 01111111111111111111111111111111 Negative: 10000000000000000000000000000000 ~ 11111111111111111111111111111111
DEC	Positive: $0 \sim 2147483647$ Negative: -2147483648~-1
OCT	Positive: 0~177 77777777 Negative: 20000000000 ~ 37777777777
HEX	Positive: 0 ~ 7FFF FFFF Negative: 80000000 ~ FFFF FFFF

- Errors are cumulative in the case of consecutive calculations, this is also true as internal consecutive calculation are performed in the case of $x^{\mathbf{\prime}}, \sqrt[4]{\square}, \sqrt[3]{\square}, x!, n P r, n C r$, etc. And may become large.

Order of Operations

This calculator will automatically determine the operation priority of each individual command as follows:-

1st Priority	Recall memory (A, B, C, D, E, F, X, Y, M), Ran\#
2nd	Calculation within parentheses ().
3rd	Function with parenthesis that request the input argument to the right: Pol(, $\operatorname{Rec}(, \mathrm{P}(, \mathrm{Q}(, \mathrm{R}(, \sin ($, $\cos \left(, \tan \left(, \sin ^{-1}\left(, \cos ^{-1}\left(, \tan ^{-1}(, \sinh (, \cosh (, \tanh (\right.\right.\right.\right.$, $\sinh ^{-1}\left(, \cosh ^{-1}\left(, \tanh ^{-1}\left(, \log \left(, \ln \left(, e^{\wedge}\left(, 10^{\wedge}(, \sqrt{ }(, \sqrt[3]{ }(\right.\right.\right.\right.\right.\right.$, Abs(, Rnd(, RanInt\#(
4th	Functions that come after the input value preceded by values, powers, power roots: $x^{2}, x^{3}, x^{-1}, x!, \circ \cdot \geqslant, \circ, r, g, \wedge\left(, \sqrt[x]{(}, \text { Percent } \%, x 10^{x},>t\right.$
5th	Fractions: $\mathrm{a}^{\mathrm{b}} / \mathrm{c}, \mathrm{d} / \mathrm{c}$
6th	Prefix symbol: (-) (negative sign), base-n symbols (d, h, b, o, Neg, Not)
7th	Statistical estimated value calculation: $\hat{\mathrm{x}}, \hat{\mathrm{y}}, \hat{\mathrm{x}} 1, \hat{\mathrm{x}} 2$
8th	Multiplication where sign is omitted: Multiplication sign omitted immediately before π, e, variables $(2 \pi, 5 \mathrm{~A}, \pi \mathrm{~A}$, etc.), functions with parentheses ($2 \sqrt{ }(3)$, $A \sin (30)$, etc.)
9th	Permutations, combinations: $\mathrm{nPr}, \mathrm{nCr}$
10th	Multiplication and division: \times, -
11th	Addition and subtraction: + , -
12th	Logical AND (and)
13th	Logical OR, XOR, XNOR (or xor, xnor)
14th	Calculation ending instruction: $=, \mathrm{M}+, \mathrm{M}-\mathrm{STO}$ (store memory)

■ In the same precedence level, calculations are performed from left to right.

- Operation enclosed within parentheses is performed first. When a calculation contains an argument that is a negative number, the negative number must be enclosed within parentheses.

Example:

(-) $2 x^{2}$	$-2^{2}=-4$	
1	$(-)$	2
1	x^{2}	$=$
$(-2)^{2}=4$		

\square The calculator will automatically determine the operation priority of each individual command.

Example 1:

$1 \div 2$ shift $\pi \square 1 \div 2 \pi=0.1591549431$

Example 2:

Calculation Stacks

- This calculator uses memory areas, called "stacks", to temporarily store numeric value (numbers) and commands (,,$+- x . .$.$) according to their precedence during calculations.$
- The numeric stack has 10 levels and command stack has 128 levels. A stack error [Stack ERROR] occurs whenever you try to perform a calculation that exceeds the capacity of stacks.
- Calculations are performed in sequence according to "Order of Operations". After the calculation is performed, the stored stack values will be released.

Error Messages and Error locator

The calculator is locked up while an error message is shown on the display to indicate the cause of the error.
■ Press CA to clear the error message, then return to the initial display of latest mode.

- Press © or \geqslant to display input expression with the cursor positioned next to the error.
- Press ON to clear the error message, clear the replay memory history and return to the initial display of the latest mode.

Error Message	Cause	Action
Math ERROR	$\begin{array}{l}\text { - The intermediate or final } \\ \text { result is outside the } \\ \text { allowable calculation } \\ \text { range. } \\ \text { - An attempt to perform a } \\ \text { calculation using a value } \\ \text { that exceeds the } \\ \text { allowable input range. } \\ \text { - An attempt to perform an } \\ \text { illegal operation (division } \\ \text { by zero, etc.) }\end{array}$	$\begin{array}{l}\text { - Check the input values } \\ \text { and make sure they are } \\ \text { all within the allowable } \\ \text { ranges, Pay special } \\ \text { attention to values in } \\ \text { any using memory } \\ \text { areas }\end{array}$
Stack ERROR	$\begin{array}{l}\text { - The capacity of the } \\ \text { numeric stack or } \\ \text { operator stack is } \\ \text { exceeded. }\end{array}$	$\begin{array}{l}\text { - Simplify the calculation. } \\ \text { - Divide the calculation } \\ \text { into two or more } \\ \text { separate parts. }\end{array}$
Syntax ERROR	$\begin{array}{l}\text { - An attempt to perform } \\ \text { an illegal mathematical } \\ \text { operation. }\end{array}$	$\begin{array}{l}\text { - Press © or © to } \\ \text { display the cursor at the } \\ \text { location of the error, } \\ \text { make appropriate }\end{array}$
corrections		

BASIC CALCULATIONS

\square Press MODE 1 to enter COMP mode.

- During the busy calculation, the calculator shows only the indicators (without any calculation result). You can press CA key to interrupt the calculating operation.

Arithmetic Calculations

- To calculate with negative values (exclude the negative exponent) enclose then with parentheses.
- This calculator supports 99 levels of parenthetical expression.

MthIO \& MathO MODE $: \stackrel{\text { Shift }}{\leftrightarrows} \stackrel{\text { Set-up }}{ } 1$

Example	Key in operation	Display
$(-2.5)^{2}$	$\begin{aligned} & 1 \square(-) \sqrt{(-)} \cdot \sqrt{5} \\ & 1=x^{2}= \end{aligned}$	$(-2.5)^{2} \quad \frac{25}{4}$
$\begin{aligned} & \left(4 \times 10^{75}\right)(-2 x \\ & \left.10^{-79}\right) \end{aligned}$		$\begin{aligned} & 4_{\times 10} 75 x-2_{\times 10}-79 \\ &-\frac{1}{1250} \end{aligned}$

Memory Calculations

Memory Variables

- There are 9 memory variables ($A-F, M, X$ and Y), which store data, results, or dedicated values.
- Store values into memory by pressing shift sTO + Memory variable.
- Recall memory values by pressing RCL + Memory variable.
- Memory content can be cleared by pressing $\mathbf{0} \stackrel{\text { Shift }}{ }$ sTO + Memory variable.
Example: $23+7 \rightarrow A(30$ store into A), calculate $2 \sin A$ and clear memory A.
MthIO \& MathO MODE : Shift SEFUP 1

Independent Memory

- Independent memory Alpha Muses the same memory area as variable M . It is convenient for calculating cumulative total by just pressing M^{+}(add to memory) or $\stackrel{\text { Shift }}{\mathrm{M}^{-}}$(subtract from memory)
- Memory contents are retained even when the calculator is powered off.
- Clear independent memory (M) by pressing $\mathbf{0} \stackrel{\text { Shift }}{\text { STO }} \stackrel{\mathrm{M}}{ }$.
- Clear all memory values by pressing shift CLR 2 (Clear Memory) $=$ CA

Answer Memory

- The input values or the most recent calculation result will be automatically stored into Answer memory whenever you press $=, \stackrel{M+}{\square} \stackrel{\text { Shift }}{ }{ }^{-}, \stackrel{\text { Shift }}{ } \stackrel{\text { sT0 }}{\square}$. Answer memory can hold up to 18 digits.
- Recall and use the latest stored Answer memory by pressing Ans.
- Answer memory is not updated as an error operation had been performed.
- Answer memory contents can be maintained even if pressing (CA , changing the calculation mode, or turning off the calculator.
MthIO \& MathO MODE : Shift SEE-up 1

Example	Key in operation	Display
$\begin{aligned} & 123+456 \rightarrow M+, \\ & \text { Ans }^{2}=335,241 \end{aligned}$	1 2 3 + 4 5 6 $M+$ x^{2} $=$	Ans $^{2} \quad 335241$
$\begin{aligned} & 789900-\text { Ans }= \\ & 454,659 \end{aligned}$	7 8 9 9 0 0 - Ans $=$	789900-Ans 454659

Fraction Calculations

The calculator supports Fraction calculation and the conversions between Fraction, Decimal point, Mixed fraction and Improper fraction.

- Specify the fraction calculation result display format by either mixed fraction ($\stackrel{\text { Shift }}{\stackrel{\text { SETUUP }}{\square} \vee 1 \text {) or improper fraction }}$ (Shift SET-UP \vee) in set-up menu.
- At the default setting, fractions are displayed as improper fractions (틈).
- Mixed Fraction display result only available after set the (■믐) in the setup menu.

	Improper Fraction $\left(\frac{\text { 픔) }}{}\right.$	Mixed Fraction $(■$ 믐)
MthIO Mode	$\frac{11}{3}$	$3 \frac{2}{3}$
LineIO Mode	$11\lrcorner 3$	$3\lrcorner 2\lrcorner 3$

■ Press $\quad \leq \rightarrow$ to switch a calculation result between fraction and decimal format.

- Press Shift $\underbrace{\text { ablcell }}$ to switch a calculation result between improper fraction and mixed fraction format.
■ Result will be displayed in decimal format automatically whenever the total digit of a fractional value (integer + numerator + denominator + separator marks) exceeds 10.
\square When fraction calculation in DecimalO mode (MthIO, DecimalO and LinelO, DecimalO), the calculation result will be shown in decimal format.

Fraction \longleftrightarrow Decimal point conversion MthIO \& MathO MODE $: \stackrel{\text { Shift SETUP }}{\square} 1$

Example	Key in operation	Display
$1 \frac{1}{2}+\frac{5}{6}=\frac{7}{3}$		$1 \frac{1}{2}+\frac{5}{6}$
$\begin{aligned} & \frac{7}{3} \leftrightarrow 2.333333333 \\ & \text { (Fraction } \leftrightarrow \text { Decimal) } \end{aligned}$	$\stackrel{5}{5}$	$\begin{gathered} 1 \frac{1}{2}+\frac{5}{6} \\ 2.333333333 \end{gathered}$
$\begin{aligned} & 2.333333333 \leftrightarrow 2 \frac{1}{3} \\ & \text { (Decimal } \leftrightarrow \text { Mixed } \\ & \text { Fraction) } \end{aligned}$	Shift ablewde	$1 \frac{1}{2}+\frac{5}{6} \quad 2 \frac{1}{3}$

Percentage Calculations

MthIO \& MathO MODE : Shift SEE-Up $1 \underset{\square}{\square}$

Example	Key in operation		Display				
To calculate 25% of 820	$\mathbf{8}$	$\mathbf{2}$	$\mathbf{0}$	\mathbf{X}	$\mathbf{2}$	$820 \times 25 \%$	
	$\mathbf{5}$	Shift	$\%$	\mathbf{Z}			205
The percentage of	$\mathbf{7}$	$\mathbf{5}$	$\mathbf{0}$	\div	$\mathbf{1}$	$750 \div 1250 \%$	
750 against 1,250	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{0}$	Shift	$\%$		
	\mathbf{E}					60	

Degree-Minutes-Seconds Calculations

Use degrees (hours), minutes and seconds key to perform a sexagesimal (base-60 notational system) calculation or convert the sexagesimal value into decimal value.

Degree-Minutes-seconds \longleftrightarrow Decimal points
MthIO \& MathO MODE $: \stackrel{\text { Shift SET-UP }}{\leftrightarrows} 1$

Replay \& Multi-statements

- Replay Memory Function
- Replay memory is only available in COMP and BASE mode.
- After the calculation is executed, the calculation input and result will be stored in the replay memory automatically.
- Pressing (or \star) can replay the performed calculation input and result history.
- After obtaining the calculation result on the display, press © or $(>$ to edit the input expression of that result.
- If the \triangleright Indicator is on the right side of a calculation result display, you need to press CA and then © or © to scroll the calculation.
- Replay memory is cleared when you press
- Initialize calculator setting by Shift $\stackrel{C L R}{3}=$ CA
- Change from one calculation mode or display mode to other.
- Press $\mathbf{O N}$ key.
- Press $\stackrel{\text { Shift }}{\leftrightarrows}$ off to power off machine.

- Multi-statements Function

- Use a colon \square to put two or more calculation input together.
- The first executed statement will have "Disp" indicator; and the "Disp" icon will disappeared after the last statement is being executed.
MthiO \& MathO MODE : Shift SEETUP 1

FUNCTIONAL SCIENTIFIC CALCULATIONS

- Press MODE 1 to enter COMP mode.

■ $\pi=3.14159265358979323$
$\square \mathrm{e}=2.71828182845904523$

Square Root, Cube, Cube Root, Power, Power Root, Reciprocal and Pi

MthIO \& MathO MODE $: \stackrel{\text { Shift }}{\square} \stackrel{\text { SET-UP }}{\leftrightarrows} 1$

Example	Key in operation	Display
$\begin{aligned} & \left(\sqrt[3]{2^{2}+5^{3}}\right)^{-1} \times \pi \\ & =0.6217559776 \end{aligned}$		$\begin{array}{r} \left(\sqrt[3]{2^{2}+5^{3}}\right)^{-1} \times \pi \\ 0.6217559776 \end{array}$
$\left(\sqrt[3]{2^{6}}+\sqrt[5]{243}\right)$ $=7$		$\left(\sqrt[3]{2^{6}}+\sqrt[5]{243}\right)$

Logarithm, Natural Logarithm and Antilogarithm

MthiO \& MathO MODE : Shift set.up 1

Example	Key in operation	Display
$\begin{aligned} & \mathrm{e}^{-3}+10^{1.2}+\ln 3= \\ & 16.99733128 \end{aligned}$		$e^{-3}+10^{1.2}+\ln (3$ 16.99733128

Angle Unit Conversion

The calculator angle unit setting is "Degree". Pressing shift SEF-up enter the setup menu to change the unit to "Radian" or "Gradient":

Press the corresponding number key $\mathbf{3}, \mathbf{4}$ or 5 for the angle unit you need. Then the display will show the $\mathbf{D}, \mathbf{R}, \mathbf{G}$ Indicator accordingly.

Convert an angle unit between "Degree", "Radian" and "Gradient" by pressing Shift $\stackrel{\text { DRG }}{\sim}$

Then, pressing $\mathbf{1}, 2$, or 3 will convert the displayed value into the selected angle unit.

MthIO \& MathO MODE $: \stackrel{\text { Shift }}{\leftrightarrows} \stackrel{\text { SEE-UP }}{\square} 1$

Example	Key in operation	Display
Convert 180 degree into radian and gradient$\begin{aligned} & \left(180^{\circ}=\pi^{\mathrm{Rad}}=\right. \\ & 200^{\mathrm{Gad})} \end{aligned}$		$\begin{array}{r} 180^{\circ} \quad \mathbb{R} \\ 3.141592654 \end{array}$
	$\stackrel{\text { Shift }}{ } \stackrel{\text { SETUP }}{ } 5$	$180^{\circ} \quad 200$

Trigonometry Calculations

\square Before using the trigonometric functions (except hyperbolic calculations), select the appropriate angle unit (Deg/Rad/Gra) by pressing Shift SEEUP 345.

Angle Unit Setting	Angle Value Input	Input Value Range for $\sqrt{ } \sqrt{\text { form result }}$
Deg	Units of 15°	$\|\pi\|<9 \times 10^{9}$
Rad	Multiples of $\frac{1}{12} \pi$ radians	$\|\pi\|<20 \pi$
Gra	Multiples of $\frac{50}{3}$ grads	$\|\pi\|<10000$

- $90^{\circ}=\frac{\pi}{2}$ Radians $=100$ Gradients.

Mthio \& MathO MODE : Shift SEFTUP 1

Example	Key in operation	Display
Degree Mode	$\stackrel{\text { Shift }}{ } \stackrel{\text { SETUP }}{ } \mathbf{3}^{4}$	D
$\sin 60=0.8660254038$	$\sin 60=$	$\begin{array}{\|l\|} \hline \operatorname{sinc} 60 \\ 0.8660254638 \end{array}$
$\begin{aligned} & \frac{1}{\sin 45^{\circ}}=\operatorname{Cosec} 45^{\circ}= \\ & 1.414213562 \end{aligned}$	$\begin{array}{lll} \hline \sin & 4 & 5 \\ = & \\ \hline \end{array}$	$\sin (45)^{-1}$ 1.414213562

- Hyperbolic (sinh/ cosh/ tanh), Inverse Hyperbolic (sinh ${ }^{-1} /$ cosh $^{-1} /$ tanh $^{-1}$) functions
- Pressing hyp enter sub-hyperbolic menu.

```
1:Eintr 2:cosho 
```

MthlO \& MathO MODE : Shift SET-UP 1

Example	Key in operation	Display
$\begin{aligned} & \sinh 2.5-\cosh 2.5 \\ & =-0.08208499862 \end{aligned}$		$\sinh (2.5)-\cosh (\mathrm{s}$ -0.08208499862
$\begin{aligned} & \text { Cosh }{ }^{-1} 45 \\ & =4.499686191 \end{aligned}$	hyp 54.5	cosh ${ }^{-1}$ (45 4.499686191

Permutation, Combination, Factorials and Random Number Generation

- Permutation: $n \operatorname{Pr}=\frac{n!}{(n-r)!}$
- Combination: $n C r=\frac{n!}{r!(n-r)!}$

■ Factorial : $x!=x(x-1)(x-2) \ldots(2)(1)$
MthIO \& MathO MODE $: \stackrel{\text { Shift }}{\square} \stackrel{1}{\square} 1$

Random Number Generation

Shift Ran\#
: Generate a random number between 0.000 and 0.999 . And the display result will be fraction format in Maths mode status.

: Generate a random number between two specified positive integers. The entry is divided by "."

MthIO \& MathO MODE : Shift SEETUP 1

Example	Key in operation	Display
Generate a random number between 0.000 \& 0.999	$\stackrel{\text { Shift Ran\# }}{\curvearrowleft}$	Ran\# $\quad \frac{283}{5006}$
Generate an integer from range of 1 to 100		RanInt\#(1, 100 81

[^0]
Coordinate Conversion

- With polar coordinates, you can calculate and Display θ within $-180^{\circ}<\theta<180^{\circ}$ range. (Same as Radian and Gradient)
- In Maths mode, press © or \oplus to scroll the calculation result.
- In Line mode, (x, y) or (r, θ) will be shown over 2 line.
- After conversion, the results will automatically be assigned to memory variables X and Y. Press $R \subset \stackrel{X}{\square}$ or $\stackrel{Y}{ }$ to show the results.

Rectangular Coordinates (Rec)

Polar Coordinates (Pol)

Shift Pol : Convert rectangular coordinates (x, y) to polar coordinates (r, θ); Press $R \subset \stackrel{X}{\square}$ for r, or $\mathbb{R C L} \square$ for θ.

MthIO \& MathO MODE : Shift SETUP $1 \stackrel{1}{\square}$

Example	Key in operation	Display
With rectangular coordinate ($\mathrm{x}=1, \mathrm{y}=$ $\sqrt{ } 3$). Find Polar coordinate (r, θ) at degree mode	$\begin{aligned} & \text { Shift Pol }=1 \text { Shift } \quad \text { Po } \\ & \sqrt{-1}=3= \end{aligned}$	$\begin{aligned} & \operatorname{Pol}(1, \sqrt{3} \\ & \quad r=2, \theta=60 \end{aligned}$
	(RCL \square	x
	(RCL) ${ }^{\text {r }}$	Y
		60

: Convert polar coordinates (r, θ) to rectangular coordinates (x, y); Press $\mathbb{R C L} \stackrel{\mathrm{x}}{\square}$ for x , or $\underset{\mathrm{RCL}}{\square}$ for y.
LineIO \& LineO MODE : Shift SET-UP 2

Example	Key in operation	Display
With Polar coordinate ($\mathrm{r}=2, \theta=60^{\circ}$). Find Rectangular coordinate (x, y) at degree mode		$\begin{aligned} & \operatorname{Rec}(2,60 \\ & i=1.730450618 \\ & ==1 \end{aligned}$
	RCL ${ }^{\mathrm{x}}$	x
	RCL ${ }^{\text {Y }}$	1.732059868

Absolute Value Calculation

MthiO \& MathO MODE : Shift SET-UP 1

Engineering Notation

LinelO \& LineO MODE : Shift SETUP 2

Display Values Exchange

- In MathIO and LinelO mode, pressing $5 \rightarrow D$ to change the calculation result value between fraction form \leftrightarrow Decimal form, the other pi and Square root calculation will display a decimal value only.
LineIO \& LineO MODE : Shift SEETUP 2

Example	Key in operation	Display
$\frac{2}{3}+2=\frac{8}{3}=2.666666667$	2 ± 3	$2\lrcorner 3+2$
	=	$8\lrcorner 3$
	$\stackrel{5}{\square}$	$2\lrcorner 3+2$
		2.666666667

LinelO \& DecimalO MODE : Shift SET-UP $2 \mathbf{2}$

Example	Key in operation	Display
$\frac{2}{3}+2=\frac{8}{3}=2.666666667$	$2 \div 3$	$2\lrcorner 3+2$
	=	2.666666667
	$5 \rightarrow$ D	$2\lrcorner 3+2$
		$8\lrcorner 3$

MthIO \& MathO MODE : Shift SEETUP 1

Example	Key in operation	Display		
$\frac{2}{3}+2=\frac{8}{3}=2.666666667$	$\mathbf{2}$	-	3	+

REMARK

- Some Calculation results, pressing $5 \rightarrow D$ key will not convert the display value.
- Some display result conversion may take a long time.

Base-n Calculations and Logical Calculations

- Press MODE 3 to enter Base-n mode.

Decimal (base 10), Hexadecimal (base 16), Binary (base 2), Octal (base 8), or logical calculations.

- To select a specific number system in base mode, simply press $\stackrel{\text { DEC }}{\square}$ Decimal [DEC], ${ }^{\text {HEX }}$ Hexadecimal [HEX],
$\stackrel{\text { BIN }}{\square}$ Binary $[\mathrm{BIN}]$ or $\stackrel{\text { OCT }}{\square}$ Octal [OCT].
- Press $\stackrel{\text { Snift }}{\leftrightarrows}$ to perform logical calculations including: Logic connection [and] / [or], exclusive or [Xor], exclusive nor [Xnor], argument complement [Not], and negation [Neg].
- If the binary calculation result is more than 8 digits,
\triangle BIK will be displayed to indicate the result has a next block.
- Press ${ }^{4 B 1 / k}$ to loop between result blocks.

In Base-n mode all the scientific functions cannot be used, and you cannot input the value with decimal places or exponents.

MthIO \& MathO MODE : Shift SET-UP 1

Example	Key in operation		Display	
$\begin{array}{l}10101011+1100- \\ 1001 \times 101 \div 10 \\ =10100001\end{array}$	1	1	0	1
(in Binary Mode)				

Base-n Transformation $\stackrel{\text { DEC }}{\square} \rightarrow \stackrel{\text { HEC }}{\square} \rightarrow \stackrel{B I N}{\square}$

Example	Key in operation	Display
12345+101=12446	1 203	12345+101
	$\pm 101 \pm$	$\begin{array}{r} \text { DEC } \\ 12446 \end{array}$
	HEX	12345+101
		$\begin{array}{r} \text { HEX } \\ \text { 0000309E } \end{array}$
	$\stackrel{\square}{\square 1 N}$	$\begin{array}{lll}\text { 12345+101 } & \Delta \\ \begin{array}{lll}\text { LBIK } & 1 / 2 & \text { BIN } \\ & 1001 & 1110\end{array} \\ & \end{array}$
	\bigcirc	12345+101
		$\begin{array}{r} \text { OCT } \\ 00000030236 \end{array}$

Logical Operation

MthIO \& MathO MODE : Shift SETUP 1

Example	Key in operation	Display
$\begin{aligned} & \text { 789ABC Xnor } \\ & 147258 \end{aligned}$		789ABCxnor14725̂8 HEX FF93171B
Ans or 789ABC	$\begin{aligned} & \hline \text { Ans shift } \\ & \hline 9 \\ & 9 \\ & \hline \end{aligned}$	Ansor789ABC FFFB9FBF
Neg 789ABC		Neg(789ABC

STATISTICAL CALCULATIONS

Statistical Type Selection

- Press MODE 2 to enter Statistical calculation mode.
- There are 8 types of Statistical Calculation and press the number to select the type of Statistic calculation.

1: 1-UAR	2: F+EX
3: $-+6 \times$	4:178
5: 5^{\wedge}	E:AFE入
	B:1. X

Pressing Key	Statistical Calculation
$1(1-V A R)$	Single-variable statistics (X)
$2(A+B x)$	2-variable (X, Y), Linear regression $(y=A+B x)$
$3\left(++C x^{2}\right)$	2-variable (X, Y), Quadratic regression $\left(y=A+B x+C x^{2}\right)$
$4(\ln x)$	2-variable (X, Y), Logarithmic regression $(y=A+B \ln x)$
$5\left(e^{\wedge} x\right)$	2-variable $(X, Y), E$ exponential regression $\left(y=A e^{B x}\right)$
$6\left(A \cdot B^{\wedge} x\right)$	2-variable (X, Y), ab Exponential regression $\left(y=A B^{x}\right)$
$7\left(A \cdot x^{\wedge} B\right)$	2-variable (X, Y), Power regression $\left(y=A x^{B}\right)$
$8(1 / X)$	2-variable (X, Y), Inverse regression $(y=A+B / x)$

Statistical Data Input

After confirmed the calculation type of the above Statistical Type Selection screen or by pressing Shift staT $\mathbf{2}$ (Data) in the STAT mode, the following Statistical Data Input screen will be shown.

1-variable STAT

2-variable STAT

1-variable STAT "FREQ ON"

- After turned on Data Frequency "FREQ" in calculator's setup menu, the FREQ column will be added into the above screen.
- The followings are the maximum number of line for data input.

Statistic type	FREQ ON	FREQ OFF
Single-Variable (only x input)	40	80
2-Variable (x \& y input)	26	40

- Input expression and display result value in Statistical Data Input screen are in Line mode (same as Comp mode with Line mode status).
- After inputted the data, then press $=$ to store the value into statistical registers and display the value (max. 6 digits) in the cell. And you can press cursor key to move the cursor between each cell.

Editing Statistical Sample Data

\square Replacing the Data in a cell
(1) In Statistical Data Input screen, move the cursor to cell you want to edit.
(2) Input the new data value or expression, and then press $=$

- Deleting a line
(1) In Statistical Data Input screen, move the cursor to line you want to delete.
(2) Press DEL.
\square Inserting a line
(1) In Statistical Data Input screen, move the cursor to the line that will be under the line being inserted.
(2) Press Shift 5 (Edit)
(3) Press 1 (Ins)
\square Deleting All STAT Data Input
(1) Press Shift sTAT 3 (Edit)
(2) Press 2 (Del-A)

Statistical Calculation Screen

- After inputting the STAT Data, press CA to enter Statistical Calculation screen.
- Statistical Calculation screen are in either LinelO, LineO mode or LineIO, DecimalO mode.
■ Use Statistical Menu to calculate the Statistical result. (S-SUM, S-VAR, S-PTS, Distr (1-Var), Reg (2-Var)).

Statistical Menu

In Statistical Calculation screen, you can press Shift sTaT to display the Statistical Menu screen.

1: Type	2: Data
3: S-SUM	4: S-VAR
5: S-PTS	6: Distr

1-variable STAT

1: Type	2: Data
3: S-SUM	4: S-VAR
5: S-PTS	6: Reg

2-variable STAT

STAT items	Description
1: Type	To enter the statistical calculation type screen
2: Data	To enter the statistical Data input screen
3: S-SUM	To enter S-SUM sub-menu (calculating sum)
4: S-VAR	To enter S-VAR sub-menu (calculating variable)
5: S-PTS	To enter S-PTS sub-menu (calculating Min \& Max values)
6: Distr (1-Var)	To enter Distr sub-menu (calculating P(t), Q(t), R(t))
7: Reg (2-Var)	To enter Reg sub-menu (Regression calculation)

Statistical calculation result in [3] S-SUM, [4] S-VAR, [5] S-PTS, [6] Reg

$\begin{array}{\|c\|} \hline \text { STAT } \\ \text { sub-menu } \\ \hline \end{array}$	STAT Type	Value	Symbol	Operation
S-SUM	$1 \& 2$ variable STAT	Summation of all x^{2} value	$\Sigma \mathrm{x}^{2}$	shitt stat 3
		Summation of all x value	£ x	shitt staT 3
	2-variable STAT only	Summation of all y^{2} value	Σy^{2}	Shits stat 3
		Summation of all y value	$\Sigma \mathrm{y}$	shitt stat 3
		Summation of xy pairs	$\Sigma \mathrm{xy}$	Shitt stat 3
		Summation of all x^{3} value	$\sum x^{3}$	Shitt staT 36
		Summation of all $x^{2} y$ pairs	$\sum x^{2} y$	5 shit star 3
		Summation of all x^{4} pairs	$\sum x^{4}$	Shitt star 3
S-VAR	$1 \& 2$ variable STAT	Number of data sample	n	Shith star 4
		Mean of the x values	$\overline{\mathrm{x}}$	shift star 4
		Population standard deviation of x	$\mathrm{X} \sigma_{\mathrm{n}}$	shits star 4
		Sample sstandard deviation of x	$x \sigma_{n-1}$	Shitt stat 4
	2-variable STAT only	Mean of the y values	$\overline{\mathrm{y}}$	$s^{\text {Shith }}$ STAT 405
		Population standard deviation of y	$\mathrm{y} \sigma_{\mathrm{n}}$	Shitt staT 46
		Sample standard deviation of y	$\mathrm{y} \sigma_{\mathrm{n}-1}$	$\stackrel{\text { Shitit }}{514 T} 4$
S-PTS	1 or 2 variable STAT	Minimum value of X	$\min X$	$\text { shitt siat } 5 \sqrt{1}$
		Maximum value of X	maxX	$\stackrel{\text { Shith }}{5} 5$
	2-variable STAT only	Minimum value of Y	$\min Y$	Shitit $_{5}^{51 A T} 5$
		Maximum value of Y	maxY	$\stackrel{\text { Shith }}{5} 5$
Reg	For non-Quad Reg	Regression coefficient A	A	Shits staT 6
		Regression coefficient B	B	shitt staT 6
		Correlation coefficient r	r	
		Estimated value of x	रे	Shitt star 6
		Estimated value of y	y	shift star 6
Reg	For Quad $\left(+C x^{2}\right)$ Reg only	Regression coefficient A	A	$\stackrel{\text { Shitit stat }}{6} 6$
		Regression coefficient B	B	5 shitt star 6
		Regression coefficient C	C	Shitt stat 6
		Estimated value of x 1	र1	${ }^{\text {Shitt }} 5 \sqrt{\text { sTAT }} 6$
		Estimated value of x 2	र2	Shitt star 6
		Estimated value of y	y	Shitt sat 6

Statistical Calculation Example

1-Var mode Example: To calculate $\sum x^{2}, \sum x, n, \bar{x}, x \sigma n, x \sigma n-1$, $\min X$, maxX of data: $75,85,90,77,79$ in 1-Var mode (Freq: OFF)

Key in operation	Display
MODE 2	
1 (1-VAR)	\|
7 5 $=$ 8 5 $=$ 9 0 $=$ 7 7 $=$ 7 9 $=$	4 8 5 77 5
CA Shitt $^{\text {STAT }} 31 \pm$	趐 $\quad 33120$
(A) Shitt star 3 ,	过 406
(CA) Shitt star $4 \times$	5
CA Shift $_{\text {STAT }} 4 \times 2$	81.2
(CA ${ }^{\text {Shitt }} \stackrel{\text { STAT }}{ } 4$	 $x \sigma n$
CA Shitt STAT $4 \times$	x σ n-1 $\quad 6.180614856$
(CA Shitt STAT $51 \pm$	$\min X \longrightarrow 75$
CA Shits 5 STAT 2	$\max X \quad 90$

Quadratic Regression type Statistical Calculation

Example: ABC Company investigate the effectiveness of the advertisement expense in coded units, the following data were obtained:

Advertisement expenses: X	18	35	40	21	19
Effectiveness: y (\%)	38	54	59	40	38

Please use the regression to estimate the effectiveness (estimate the value of y) if the advertisement expenses $\mathrm{X}=30$, and estimate the advertisement expenses level (estimate the value of X_{1}, X_{2}) for effectiveness $y=50$.

Key in operation	Display
MODE 2	
$3\left(+C x^{2}\right)$	
1 8 $=$ 3 5 $=$ 4 0 $=$ 2 1 1 1	
$\text { CA } 3 \square 0$	30̂̂ $\quad 48.69615715$
$\begin{aligned} & \text { CA } 50 \text { Shift staT } 64 \\ & =0 \end{aligned}$	$50 \hat{\mathrm{x}}_{1} \quad 31.30538226$
$\text { CA } 50 \text { shitt staT } 6$	$50 \hat{\mathrm{x}}_{2} \quad-167.1096731$

Probability Distribution Calculation

- After sample data is entered in either Statistic (SD) or Regression (REG) mode, you can perform the normal distribution or probability distribution calculation such as $\mathrm{P}(\mathrm{t})$, $Q(t)$ and $R(t)$ in which t is the variate of the probabilistic experiment.

$$
\begin{array}{lll}
& x & : \text { Random variable } \\
\mathrm{t}=\frac{\mathrm{x}-\overline{\mathrm{x}}}{\mathrm{x} \sigma_{\mathrm{n}}} & \overline{\mathrm{x}} & : \text { Mean of sample } \\
\mathrm{x} \sigma_{\mathrm{n}} & : \text { Standard deviation }
\end{array}
$$

- Press shift $1 \mathbf{6}$ to display the distribution calculations screen.

1: $P($	2: $Q($
3: $R($	4: $>t$

- Press $\mathbf{1}, 2,3$ or 4 for the corresponding calculations.

$\mathrm{P}(\mathrm{t})$: Probability below a given point x	$\mathrm{P}(\mathrm{t})=\int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{t-u}{\sigma}\right)^{2}} d t$,
$\mathrm{Q}(\mathrm{t})$: Probability below a given point x and above the mean	$\mathrm{Q}(\mathrm{t})=0.5-\mathrm{R}(\mathrm{t})$,
$\mathrm{R}(\mathrm{t})$: Probability above a given point x	$\mathrm{R}(\mathrm{t})=1-\mathrm{P}(\mathrm{t})$,

$\rightarrow t$: This function is preceded by the argument X, and determines the normalized variate $X>t=\frac{X-\bar{X}}{X \sigma_{n}}$

Example: Calculate the probability distribution $\mathrm{P}(\mathrm{t})$ for the sample data: $20,43,26,46,20,43$, when $\mathrm{x}=26$.

Key in operation	Display
MOOE 21	迷
CA 2 6 shift stat 6 4 $=$	26 t $\quad-0.6236095645$
Shitt stat 61 Ans $=$	P(Ans 0.26644

EQUATION CALCULATIONS

- Press MODE 4 to enter the equation mode.

1:an $X+b n Y=c n$
2: $a n X+b n Y+c n Z=d n$
$3: a X^{2}+b X \div c=0$
$4: a X^{3}+b X^{2}+c X+d=0$

Equation Item	Description
[1] 2 unknow EQN	Simultaneous Linear Equations with two unknowns
[2] 3 unknow EQN	Simultaneous Linear Equations with three unknowns
[3] Quad EQN	Quadratic Equation, degree 2 equation
[4] Cubic EQN	Cubic Equation, degree 3 equation

Simultaneous Linear Equations

Simultaneous Linear Equations with Two Unknowns:

$$
\begin{aligned}
& a 1 x+b 1 y=c 1 \\
& a 2 x+b 2 y=c 2
\end{aligned}
$$

Simultaneous Linear Equations with Three Unknowns:

$$
\begin{aligned}
& a 1 x+b 1 y+c 1 z=d 1 \\
& a 2 x+b 2 y+c 2 z=d 2 \\
& a 3 x+b 3 y+c 3 z=d 3
\end{aligned}
$$

Example: Solve the simultaneous equation with three unknowns

$$
\begin{aligned}
& 2 x+4 y-4 z=20 \\
& 2 x-2 y+4 z=8 \\
& 5 x-2 y-2 z=20
\end{aligned}
$$

Key in operation	Display
MODE $\mathbf{4} \mathbf{2}$ (3 unknowns)	
$\begin{aligned} & 2=4=(-)=4 \\ & =200= \end{aligned}$	
$\begin{aligned} & 2=(1-) \quad 2=4 \\ & =8= \end{aligned}$	
$\begin{aligned} & 5=1(-)=2=1 \\ & 2=2=0= \end{aligned}$	
=	$X=$
=	$Y=$
=	$\mathrm{Z}=\square$

Quadratic and Cubic Equations

Quadratic equation: $a x^{2}+b x+c=0$ (a second-order polynomial equation with a single variable x)
Cubic equation : $a x^{3}+b x^{2}+c x+d=0$ (an equation with cubic polynomial)
Example: Solve the Cubic equation $5 x^{3}+2 x^{2}-2 x+1=0$

Key in operation	Display
\square 4 (Cubic equation)	$\square_{0} \sigma_{0} \varepsilon_{0}$
$\begin{aligned} & 5=2=2 \\ & =1=1 \end{aligned}$	
=	$\mathrm{X}_{1}=\square-1$
=	$\mathrm{X}_{2}=\quad \frac{3}{10}+0.331662479 \mathbf{i}$
=	$X_{3}=\quad \frac{3}{10}-0.331662479 \mathbf{i}$

For quadratic, cubic, or quartic equations, the variable name starts with " X_{1} ".

BATTERY REPLACEMENT

When the display characters are dim or show the follow message on the screen, turn the calculator off and replace the lithium battery immediately.
LOW BATTERY

Please replace the lithium battery using the following procedures, 1. Press shift off to power off the calculator.
2. Remove the screw that securely fixes the battery cover in place.
3. Remove battery cover.
4. Remove the old battery with ball pen or similar sharp object.
5. Load the new battery with positive " + " side facing up.
6. Replace the battery cover, screw, and press $\mathbf{O N}, \stackrel{\text { Shift CLR }}{\square}$
$3=C A$ to initialize the calculator.

Caution: Risk of explosion if battery is replaced by an incorrect type. Dispose of used battery according to the instruction.

Electromagnetic interference or electrostatic discharge may cause the display to malfunction or the contents of the memory to be lost or altered.
Should this occur, press $O N$, Shift CLR $3=C A$ to restart the calculator.

ADVICE AND PRECAUTIONS

- This calculator contains precision components such as LSI chips and should not be used in place subject to rapid variations in temperature, excessive humidity dirt or dust, or exposed to direct sunlight.
- The liquid crystal display panel is made of glass and should not be subjected to excessive pressure.
- When cleaning the device do not use a damp cloth or volatile liquid such as paint thinner. Instead, use only a soft, dry cloth.
- Do not under any circumstances dismantle this device. If you believe that the calculator is not functioning properly, either bring or mail the device together with the guarantee to service representative of Canon Business office.
- Never dispose the calculator improperly such as burning; it can create risks of personal injury or harm. You are suggested to dispose this product according to your national law.
- Do replace the battery once very two years even it is not used frequently.

Battery Caution!

- Keep the Battery out of reach of children. If the battery is swallowed, contact a doctor immediately.
- Misuse of battery may cause leakage, explosion, damages or personal injury.
- Don't recharge or disassemble the battery, it could cause a short circuit.
- Never expose the battery to high temperatures, direct heat, or dispose by incineration.
- Never leave a dead battery in the calculator as the dead battery may leak and cause damage to the calculator.
- Continue using the calculator in the low battery condition may have improper operation or the stored memory may be corrupted or lost completely. Keep the written records of important data all the time; and replace the battery as soon as possible.

SPECIFICATIONS

Power Supply	: Solar and Lithium battery (CR2032 x 1)
Power Consumption	: DC 3.0V / 0.3mW
Battery Life	: Approximately 3 years (Base on 1 hour operation per day)
Auto power off	: Approx. 7 minutes
Usable Temperature	$: 0^{\circ} \sim 40^{\circ} \mathrm{C}$
$\text { Dimension: } \begin{aligned} & 171(\mathrm{~L}) \times \\ & 168(\mathrm{~L}) \times \end{aligned}$	$86(\mathrm{~W}) \times 18.75(\mathrm{H}) \mathrm{mm}$ (with cover) $/$ $80(\mathrm{~W}) \times 14.5(\mathrm{H}) \mathrm{mm}$ (without cover)
Weight: $\quad 131 \mathrm{~g}$ (w	h cover) / 94.5 g (without cover)
*Specifications are sub	ject to change without notice.

CANON ELECTRONIC BUSINESS MACHINES (H.K.) CO., LTD.
17/F., Tower One, Ever Gain Plaza,
82-100 Container Port Road, Kwai Chung,
New Territories, Hong Kong
CANON MARKETING (MALAYSIA) SDN BHD.
Block D, Peremba Square, Saujana Resort, Section U2, 40150 Shah Alam, Selangor Darul Ehsan, Malaysia

[^1]
[^0]: * The value is only a sample, results will different of each time.

[^1]: PUB NO. E-IE-481
 Made in China / Printed in China

