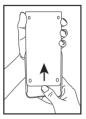


F-715SG / F-715SA SCIENTIFIC CALCULAOR USER INSTRUCTIONS

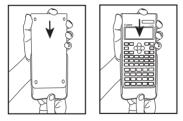
ENGLISH

E-IE-480


CONTENTS

HOW TO USE THE SLIDE COVER P.3
DISPLAY (2-LINE DISPLAY) P.4
TO GET START P.4
Power ON, OFF P.4
MODE SelectionP.5
Display Formats Setting P.6
Before Using the Calculator P.6
INPUTTING EXPRESSIONS AND VALUES P.7
Input CapacityP.7
Input EditingP.7
Replay, Copy and Multi-statementsP.8
INPUT RANGE AND ERROR MESSAGE P.9
Calculation Accuracy, Input ranges P.9
Order of OperationsP.11
Calculation Stacks P.12
Error Message and Error Locator P.12
BASIC CALCULATIONS P.13
Arithmetic Calculations P.13
Memory Calculations P.14
Fraction OperationsP.15
Percentage Calculations P.16
Degree-Minutes-Seconds Calculations P.18
Fix, Sci, Norm, ROUND P.19
FUNCTIONAL SCIENTIFIC CALCULATIONS P.21
Square, Root, Cube, Cube Root, Power, Power Root,
Reciprocal and PiP.21
Logarithm, Natural Logarithm, Antilogarithm and Logab P.21
Angle Unit ConversionP.22
Trigonometry Calculations P.23
Permutation, Combination, Factorials and Random
Number Generation P.24
Least Common Multiple and Greatest Common Divisor P.25
Quotient and Remainder P.25
Coordinate Conversion P.26
Absolute Value Calculation P.26
STATISTICAL CALCULATIONS P.27
Standard Deviation P.29
Regression Calculations P.29
BATTERY REPLACEMENT P.33
ADVICE AND PRECAUTIONSP.34
SPECIFICATIONS P.35

Thank you for purchasing Canon Scientific Calculator. The F-715SG/ F-715SA features scientific, statistical and other advance functions such as LCM, GCD, Quotient and Remainder Calculations, and many more.


We recommend you to read this user manual and all the important notices before start using F-715SG/F-715SA. And please keep this user manual with you for future use.

HOW TO USE THE SLIDE COVER

Slide to open the cover

Slide to close the cover

ronnula (12 characters)

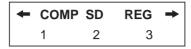
<status indicators=""></status>		
S	: Shift key	
А	: Alpha key	
hyp	: Hyperbolic key	
M	: Independent memory	
STO	: Store Memory	
RCL	: Recall Memory	
SD	: Statistic Mode	
REG	: Regression Mode	
D	: Degree Mode	
R	: Radian Mode	
D R G	: Grade Mode	
FIX	: Fixed-decimal Setting	
SCI	: Scientific Notation	
Disp	: Multi-statements Display	
Q	: Quotient value	
r	: Remainder value	
2	: Undo	
♦	: Upper Arrow	
▼	: Aown Arrow	

TO GET START

Power ON, OFF

First time operation:

- 1. Pull out the battery insulation sheet, then the battery will be loaded and the calculator can be powered on.
- 2. Press Mich Alpha CLR 3 = Mich to reset the calculator.
- Power ON: When Cover ON/Clear All) is pressed.


Power OFF: When Shift OFF are pressed.

Auto Power Off Function:

When the calculator is not used for about **7 minutes**, the calculator will automatically power off.

MODE Selection

Press MOP to start the calculation mode selection with the following display:

When pressing (), () or (), you can access the next (or previous) mode selection page.

The following table shows the mode selection menu:

Operation		Mode	
MODE 1	COMP	Normal Calculation	
MODE 2	SD	Statistical Calculation	SD
MODE 3	REG	Regression Calculation	REG
MODE MODE 1	Deg	Degree	D
MODE MODE 2	Rad	Radian	R
	Gra	Grade	G
₩₩ 001	Fix	Fixed-decimal Setting	FIX
MODE () () () () () () () () () () () () ()	Sci	Scientific Notation	SCI
MODE	Norm	Exponential Notation	
MODE (1	Disp*1	Display Setup Selection	

*1 Display Setup Selection options

- First page : Press 1 [ab/c] or 2 [d/c] to specify mixed fraction or improper fraction display.
 - ③ : Press 1 [Dot] or 2 [Comma] to specify decimal point or 3 digits separator symbols.

Display Formats Setting

F-715SG/F-715SA can display a result up to 10 digits. Results exceed the digit limit will be automatically displayed by exponential notation format. You can enter a value in floating-decimal, fixed-decimal, or scientific notation format and display format setting only affects the calculation results.

Example : Change the display formats for 1.23 x10-03

Display Setting	Operation	Display (Lower)
Default setting :	123×·0	1.23 x10-03
Norm 1,	0001=	
Scientific Notation :		
"5" significant digits	Mee () 2 5	1.2300 x10 ⁻⁰³
Exponential Notation : Norm 2	MODE © © 3 2	0.00123
Fixed decimal places : "7"		0.0012300

Before Using the Calculator

Check the current Calculation Mode

Be sure to check the status indicators that indicate the current calculation mode (SD, REG... etc), display formats setting and angle unit setting (Deg, Rad, Gra) before starting a calculation.

Return Calculation Mode to the initial setup

You can return the calculation mode to the initial default by pressing

Calculation Mode	: COMP
Angle Unit	: Deg
Exponential Display Format	: Norm 1
Fraction Display Format	: a b/c
Decimal Point Character	: Dot

, and this action will not clear the variable memories.

Initialize the Calculator

When you are not sure the current calculator setting, you are recommended to initialize the calculator (calculation mode "COMP", angle unit "Degree", and clear replay and variable memories) by performing the following key operations:

Alpha CLR 3 (All) = ON/CA

INPUTTING EXPRESSIONS AND VALUES

Input Capacity

F-715SG/F-715SA allows you to input a single calculation up to 79 steps. One step is used as each time you press one of the numeric keys, arithmetic keys, scientific calculation keys or Ime key. Herrif , Herrif

Input Editing

CE/C () DEL Insert

New input begins on the left of the upper (entry) line. As the entries are more than 12 digits, the line will scroll to the right consecutively. Press ③, ④ to scroll the cursor within the upper (entry) line and you can perform input editing as needed.

Example (under editing): 1234567 + 889900 Replacing an entry (1234567 → 1234560)

Display Setting	Operation	Display (Upper)
Press or keep pressing until "7" blinks	©©	123456 <u>7</u> +8899 ⇒
Replace with "0"	0	1234560 <u>+</u> 8899 ⇒

Deletion (1234560 → 134560)

Press or keep pressing until "2" blinks	©©	1 <u>2</u> 34560+8899 ⇒
"2" is deleted	DEL	∽1 <u>3</u> 4560+88990 ⇒

Insertion (889900 → 2889900)

Press or keep pressing until "8" blinks	······································	∽134560+ <u>8</u> 8990 ⇒
"8" and [] blinks alternately	Shift Insert	∽134560+ [®] 8990 ⇒
Insert "2", "8" still blinking	2	134560+2₽899 ➡

Undo (889900)

Clear "889900", 1 still blinking	CE/C	∽134560+2 ^[]
Resume "889900"	Shift 😡	← 560+2889900LJ

- After deleted an input by DEL or cleared the input by DEL ,
 icon will be shown on the display.
- Press <u>shift</u>
 to resume up to 79
 to resume up to 79
 to resume up to 79
- If pressed provide the construction to delete character(s) then clear the display, the calculator will prioritize the undo from resuming the latest reg cleared characters, and followed with the deleted characters continuously.
- After inserting a new data or executing a calculation command, or pressing exec, the calculator cannot perform the "Undo" function.

Replay, Copy and Multi-statements

Replay

- Replay memory capacity is 256 bytes that can store calculation expressions and results.
- After the calculation is executed, the calculation expression and its result will be stored in the replay memory automatically.
- Pressing (or) can replay the performed calculation expressions and results.
- · Replay memory is cleared when you.
 - i) Initialize calculator setting by Alpha CR 2 = WCA (or 3 = WCA).
 - ii) Change from one calculation mode to another.
 - iii) Press mica key.
 - iv) Turn off the calculator by Shift OFF .

Сору

Press Shift after replayed the previous calculation expressions (statements).

Multi-statements

- You can put two or more calculation expressions together by using a colon .
- The first executed statement will have [Disp] indicator; and the [Disp] icon will disappeared after the last statement is being executed.

Operation	Display (Upper line)	Display (Lower Line)
8+9=	8 + 9	17.
5 × 2 Alpha Ans + 6 =	5 x 2	10. _{Disp}
Ξ	Ans + 6	16.
O O Shift @	9:5x2:Ans+6_	17.
Ξ	8 + 9	17. _{Disp}
Ξ	5 x 2	10. _{Disp}
Ξ	Ans + 6	16.

INPUT RANGE AND ERROR MESSAGE

Calculation Accuracy, Input Ranges

Internal digits: Up to 16

Accuracy*: ±1 at the 10th digit for a single calculation.

±1 at the last significant digit for exponential display. Output ranges: ±1 x 10⁻⁹⁹ to ±9.999999999 x 10⁹⁹

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c } \hline Grad & 0 \leq x \leq 4.99999999910^{10} \\ \hline Grad & 0 \leq x \leq 4.50000008x10^{10} \\ \hline Grad & 0 \leq x \leq 785398164.9 \\ \hline Grad & 0 \leq x \leq 5.00000009x10^{10} \\ \hline tan x & Deg \\ \hline Grad & 0 \leq x \leq 5.00000009x10^{10} \\ \hline tan x & Deg \\ \hline Grad & Same as sinx, except when x = 90(2n-1) \\ \hline Grad & Same as sinx, except when x = \pi/2(2n-1) \\ \hline Grad & Same as sinx, except when x = 100(2n-1) \\ \hline Same as sinx, except when x =$
$ \begin{array}{c cccc} \cos x & \ \ \mbox{Deg} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{tabular}{ c c c c c } \hline Grad & Same as sinx, except when $ x =100(2n-1)$ \\ \hline sin^1x, cos^{-1}x & 0 \leq $ x \leq 1$ \\ \hline tan^1x, tanhx & 0 \leq $ x \leq 9.999999999x10^{99}$ \\ \hline sinhx, coshx & 0 \leq $ x \leq 4.999999999x10^{99}$ \\ \hline sinh^{-1}x & 0 \leq $ x \leq 4.999999999x10^{99}$ \\ \hline cosh^{-1}x & 1 \leq $x \leq 4.999999999x10^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.99999999x10^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.99999999x10^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.99999999x10^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.99999999x10^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.99999999x10^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.99999999x10^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.999999999x10^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.999999999x10^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.999999999x10^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.9999999999x10^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.999999999x10^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.999999999999999900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.9999999999900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.9999999999900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.999999999900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.999999999900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.999999999900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.999999999900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.999999999900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.999999999900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.99999999900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x \leq 9.99999999900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.9999999900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.99900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.9900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$ \\ \hline tanh^{-1}x & 0 \leq $ x < 9.900^{99}$
$\begin{array}{lll} \sin^{-1}x,\cos^{-1}x & 0 \leq \mid x \mid \leq 1 \\ \tan^{-1}x,\tan hx & 0 \leq \mid x \mid \leq 9.999999999910^{99} \\ \sin hx,\cosh x & 0 \leq \mid x \mid \leq 230.2585092 \\ \sinh^{-1}x & 0 \leq \mid x \mid \leq 4.99999999910^{99} \\ \cosh^{-1}x & 1 \leq x \leq 4.99999999910^{99} \\ \tanh^{-1}x & 0 \leq \mid x \mid \leq 9.99999999910^{99} \\ \tanh^{-1}x & 0 \leq \mid x \mid \leq 9.99999999910^{11} \\ \log x,\ln x & 0 < x \leq 9.99999999910^{99} \\ 10^{x} & -9.99999999910^{99} \leq x \leq 99.999999999 \\ \sigma^{x} & -9.99999999910^{99} \leq x \leq 230.2585092 \\ \end{array}$
$\begin{array}{l lllllllllllllllllllllllllllllllllll$
$\begin{array}{l lllllllllllllllllllllllllllllllllll$
$\begin{split} & \sinh^{-1}x & 0 \leq x \leq 4.99999999x10^{99} \\ & \cosh^{-1}x & 1 \leq x \leq 4.999999999x10^{99} \\ & \tanh^{+1}x & 0 \leq x \leq 9.99999999x10^{99} \\ & \tanh^{+1}x & 0 \leq x \leq 9.99999999x10^{99} \\ & \log_{x} \ln x & 0 < x \leq 9.99999999x10^{99} \\ & 10^{x} & -9.999999999x10^{99} \leq x \leq 99.99999999 \\ & \sigma^{x} & -9.999999999x10^{99} \leq x \leq 230.2585092 \end{split}$
$\cos h^{-1}x$ $1 \le x \le 4.99999999x10^{99}$ $tanh^{-1}x$ $0 \le x \le 9.99999999x10^{99}$ $logx, lnx$ $0 < x \le 9.99999999x10^{99}$ 10^x $-9.999999999x10^{99} \le x \le 99.99999999$ d^x $-9.999999999x10^{99} \le x \le 230.2585092$
tanh ^{1}x $0 \le x \le 9.999999999 x10^{-1}$ logx, lnx $0 < x \le 9.999999999x10^{99}$ 10^{x} $-9.999999999x10^{99} \le x \le 99.99999999$ σ^{x} $-9.999999999x10^{99} \le x \le 230.2585092$
logx, Inx $0 < x \le 9.999999999x10^{99}$ 10^x $-9.999999999x10^{99} \le x \le 99.99999999$ e^x $-9.999999999x10^{99} \le x \le 230.2585092$
0^x -9.999999999x10 ⁹⁹ ≤ x ≤ 99.99999999 e^x -9.999999999x10 ⁹⁹ ≤ x ≤ 230.2585092
e^{x} -9.99999999910 ⁹⁹ $\leq x \leq 230.2585092$
\sqrt{x} 0 ≤ x < 1x10 ¹⁰⁰
X ² x < 1x10 ⁵⁰
X ³ x ≤ 2.15443469x10 ³³
1/x x < 1x10 ¹⁰⁰ ; x ≒ 0
$3\sqrt{x}$ x < 1x10 ¹⁰⁰
X! $0 \le x \le 69$ (x is an integer)
nPr $0 \le n < 1x10^{10}, 0 \le r \le n$ (n, r are integers)
$1 \leq \{n!/(n-r)!\} < 1 \times 10^{100}$
nCr $0 \le n < 1x10^{10}, 0 \le r \le n$ (n, r are integers)
$1 \leq [n!/\{r!(n-r)!\}] < 1 \times 10^{100}$

Function	Input Range		
Pol(x,y)	x , y ≦ 9.999999999x10 ⁴⁹		
	$(x^2+y^2) \leq 9.9999999999x10^{99}$		
Rec(r, 0)	0≤r≤9.9999999999x10 ⁹⁹		
	θ: Same as sinx		
0 7 77	a , b, c < 1x10 ¹⁰⁰ , 0 ≦ b, c		
< °'"	x < 1x10 ¹⁰⁰ , Decimal ↔ Sexagesimal Conversions		
	0°0°0° ≤ x ≤ 999999°59°		
^(x ^y)	x>0: -1x10 ¹⁰⁰ < y log x < 100		
	x=0: y > 0		
	x<0: y=n,1/(2n+1), (n is an integer),		
	However: -1x10 ¹⁰⁰ < y log x < 100		
×√y	$y>0: x \neq 0, -1x10^{100} < (1/x) \log y < 100$		
	y=0: x > 0,		
	y<0: x=2n+1,1/n (n \neq 0, n is an integer)		
	However: -1x10 ¹⁰⁰ < (1/x) log y < 100		
a ^b /c	Total of integer, numerator, and denominator must be		
70	10 digits or less (including division marks).		
SD	$ x < 1x10^{50}$, $x\sigma_n$, $y\sigma_n$, \bar{x} , \bar{y} : $n \neq 0$		
(REG)	$ y < 1x10^{50}$, $x\sigma_{n-1}$, $y\sigma_{n-1}$, A, B, r, : n $\neq 0, 1$		
	$ n < 1x10^{100}$ med : 0 < n < 1x10^{10}, n is an integer		
LCM & GCD	0 < x ≦ 9.999999999x10 ¹²		
	$0 < y \leq 9.999999999x10^{12}$		
	0 < z ≦ 9.99999999910 ¹²		
Abs	x < 1 x 10 ⁵⁰		
$\theta \leftrightarrow r \theta r$	0 < x ≦ 9.999999999x10 ¹²		
(Quotient &	$0 < y \leq 9.999999999x10^{12}$		
Remainder)	Quotient: 0 ≦ Q ≦ 9999999999		
	Remainder: 0 ≦ r ≦ 9999999999		

*Errors are cumulative in the case of consecutive calculations, this is also true as internal consecutive calculations are performed in the case of $\Lambda(x^{y})$, $x_{\sqrt{y}}$, x!, nPr, nCr, etc. and may become large.

Order of Operations

The calculator will automatically determine the operation priority that algebraic expressions can be entered just as they are written:

1)	Coordinate transformation	: Pol(x, y), Rec(r, e)
	Statistic Points	: max, min, med
	Logarithm with a, b variables	: log _a b(a, b)
	Random Integer Number Generation	: i~Rand(A, B)
	LCM & GCD	: LCM(, GCD(
	Quotient and remainder	: Qr(
	Other Function with parentheses	: Abs(
2)	Type A* functions	
	Cube, Square, Reciprocal, Factorial	: x ³ , x ² , x ⁻¹ , x!, °' "
	Percentage	: %
	Regression value	: \$, \$1, \$2, \$
	Angle unit conversions	: DRG 🕨

*To perform type A function, input calculation value then press the above function key(s)

- Powers and roots : ∧(x^y), ^x√⁻
- 4) Fraction : a b/c, d/c
- Abbreviated multiplication format in front of π, e(natural logarithm base), memory name, or variable name : 2π, 3e, 5A, Aπ, etc.
- 6) Type B** function : $\sqrt{, }\sqrt[3]{}$, log, ln, e^x, 10^x, sin, cos, tan, sin⁻¹, cos⁻¹, tan⁻¹, sinh, cosh, tanh, sinh⁻¹, cosh⁻¹, tanh⁻¹, (-).

**To perform type B function, press the above function key(s) then input calculation value

- 7) Abbreviated multiplication format in front of Type B functions : $2\sqrt{3}$, Alog2, etc.
- 8) Permutations (nPr) and combinations (nCr).
- 9) x,÷
- 10)+,-
- Operations of the same precedence are performed from right to left. For example: e^xIn√120 → e^x{In(√120)}. Other operations are performed from left to right
- Operations enclosed with parentheses are performed first. When a calculation contains an argument that is a negative number, the negative number must be enclosed within parentheses.
- **Example:** $(-2)^4 = 16$; and $-2^4 = -16$

Calculation Stacks

- This calculator uses memory areas, called "stacks", to temporarily store numeric value (numbers) and commands (+ - x ...) according to their precedence during calculations.
- The numeric stack has 10 levels and the command stack has 24 levels. A stack error [Stack ERROR] occurs whenever you try to perform a calculation that exceeds the capacity of stacks.
- Calculations are performed in sequence according to "Order of Operations". After the calculation is performed, the stored stack values will be released.

Error Messages and Error Locator

The calculator is locked up while an error message is shown on the display to indicate the cause of the error.

- Press once will clear the error, remove all replay memory and return to initial display of the latest mode.
- Press rev will clear the error message and return to the display of the latest mode.

Error Message	Cause	Action
Math ERROR	 Calculation result is outside the allowable calculation range An attempt to perform a calculation using a value that exceeds the allowable input range. An attempt to perform an illogical operation (division by zero, etc.) 	Check your input values and make sure they are all within the allowable ranges. Pay special attention to values in any memory areas you are using.
Stack ERROR	The capacity of the numeric stack or operator stack is exceeded.	Simplify the calculation. The numeric stack has 10 levels and the operator stack has 24 levels. Divide your calculation into two or more separate parts.

Press () or () to display the calculation with the cursor positioned under the error and you can correct it accordingly.

Error Message	Cause	Action
Syntax ERROR	An attempt to perform an illegal mathematical operation.	Press () or () to display the calculation with the cursor located at the location of the error and make required corrections.

BASIC CALCULATIONS

- Press MODE 1 to enter COMP mode as you want to perform basic calculations.
- During the busy calculation, the calculator will display the message [PROCESSING].

Arithmetic Calculations

 To calculate the negative values (excludes the negative exponent), you have to enclose them with parentheses.

+−×÷

Calculation Expression	Operation	Display (Result)
(-2.5) ²	((-) 2 • 5)	
	<u>x²</u> =	6.25
(4 x 10 ⁷⁵)(-2 x 10 ⁻⁷⁹)	4 EXP 7 5 X (-)	
	2 EXP (-) 7 9 =	-8 x10 ⁻⁰⁴

- · This Calculator supports 24-level of parenthetical expression.
- You can omit the close parentheses) as the calculation ends with \equiv or $\underline{\rm M} +$.

Calculation Expression	Operation	Display (Result)
(tan - 45) ÷ (-2)	tan () 4 5 ÷ () 2 =	0.5
tan (- 45 ÷ -2)	tan (() 4 5 ÷	0.0
	(-) 2 =	0.414213562

! When the number of) is more than (, [Syntax ERROR] will be shown.

Memory Calculations

Memory Variables

- There are 17 memory variables (0 through 9, A through D, M, X, and Y) which store data, results, or dedicated values.
- To store values into memory by pressing ^{STO} + Memory variable.
- To recall memory values, press RCL + Memory variable.

Example: 23 + 7 (Store to A), calculate sin (memory A), and clear memory A

Operation	Display (Upper Line)	Display (Lower Line)
2 3 + 7 Shift STO _ A	23+7 ➡ A	30.
sin RCL 📥 😑	sin A	0.5
0 Shift STO A	0 → A	0.

Independent Memory

- Independent memory <u>M</u>uses the same memory area as variable M. It is convenient for calculating cumulative total by just pressing (M+) (add to memory) or ^M(subtract from memory); and the memory contents are retained even when the calculator is turned off.
- To clear independent memory (M), input 0 50 M
- When you want to clear all memory values, press Alpha CR 1
 (Mcl)
 (Mcl)

Answer Memory

 The input values or the most recent calculation result will be automatically stored into Answer Memory whenever you press 三, Met, 純th, 地方 followed by a memory variables, or just reall a memory variable by 底.

Ans M- M+ M STO RCL

Operation	Display (Upper)	Display (Lower)	
123+4			
5 6 M+	123+456M+	579.	
$x^2 =$	Ans ²	335,241.	

 Ans can recall and use the latest stored Answer Memory by pressing Ans.

Operation	Display (Upper)	Display (Lower)
78990		
0 — Ans =	789900 - Ans	454,659.

! Answer Memory is not updated as an error operation had been performed.

Fraction Operations

The Calculator support Fraction Calculation and the conversions between Fraction, Decimal point, Mixed fraction and Improper fraction.

Fraction Calculation, Fraction ↔ Decimal point conversion

Example	Operation	Display (Lower)
$1\frac{2}{3} + \frac{5}{6} = 2\frac{1}{2}$	1 a kk 2 a kk 3 + 5 a kk 6 =	2 د 1 د
$2\frac{1}{2} \iff 2.5$ (Fraction \iff Decimal)	a bic a bic	2.5 2∟1∟2.

- Result will be displayed in decimal format automatically whenever the total digits of a fractional value (integer + numerator + denominator + separator marks) exceeds 10.
- As a fraction calculation is mixed with decimal value, the result will be displayed by decimal format.

a b/c d/c

Decimal ↔ Mixed fraction ↔ Improper fraction conversion

Example	Operation	Display (Lower)
$5.25 \leftrightarrow 5\frac{1}{4}$	5 · 2 5 =	5.25
(Decimal \leftrightarrow Mixed Fraction)	a hic	5_1_4.
(Mixed Fraction \leftrightarrow		
Improper Fraction)	Shift 4/c	21」4.

- · Fraction conversion may take as long as two seconds.
- ! You can specify the fraction calculation result (when the result greater than one) display format by either mixed fraction or improper fraction.

Simply press	(Disp] 1,	then press	the correspo	nding
setting you need:				

- 1 a b/c : Mixed fraction
- 2 d/c : Improper fraction

Percentage Calculations

You can perform the following percentage calculations:

- Basic : To calculate a certain percentage of a value (A × B ^{Shift} [™] =).
 - : Percentage of a value against another value (A [÷] B Shift [∞] [=]).

۴.

Example	Operation	Display (Upper)	Display (Lower)
To calculate 25 % of 820	820×2 5 Shift % =	820 x 25 %	205.
The percentage of 750 against 1250	750÷1 2505hift %-	750 ÷ 1250 %	60.

Mark up : "A" value mark up by "B%" (A + A 本 B 監結 を) Discount : "A" value have "B%" discount (A ー A 本 B 監結 を)

Example	Operation	Display (Upper)	Display (Lower)
820 mark up 25%	820+8 20×25		
	Shift 는 😑	820+820x25%	1,025.
820 have 25% discount	820-8 20×25		
	Shift 🍋 😑	820-820x25%	615.

Percentage Increase :

If "A" is added to "B", the percentage increase from "B" is:

Percentage Change :

If "A" is changed into "B", the percentage change from "A" to "B" is:

Example	Operation	Display (Upper)	Display (Lower)
300 is added to 750, the percentage increase of 750 is	(300+ 750)÷ 750shift%		
		(300+750)÷75	140.
25 increased into 30, the percentage change	(30-2) 5)÷25		
of 25 is	Shift ⊱ 😑	(30-25)÷25%	20.

Percentage Proportion :

the ratio/ percentage of each individual portion in a calculation expression.

If A + B + C = D

"A" is a% of "D" where a = $\frac{A}{D} \times 100\%$

Examples: To calculate the ratio of each portion as 25+85+90=200 (100%), the ratio of 25 is 12.5%, 85 is 42.5%, 90 is 45%

Operation	Display(Upper)	Display(Lower)
2 5 + 8 5 + 9 0 Shift STO	25+85+90 ⇒ A	200.
2 5 ÷ RCL * A Shift % =	25÷A %	12.5
8 5 ÷ RCL * A Shift % =	85÷A %	42.5
90÷Alpha * A Shift %=	90÷A %	45.

* You can store the sum of value into memory variables, then recall and use the value by pressing RC or Apha + Memory variable.

Degree-Minutes-Seconds Calculations

You can use degrees (hours), minutes and seconds key to perform a sexagesimal (base-60 notational system) calculation or convert the sexagesimal value into decimal value.

₀,,,, **€**,,,,,


Degree-Minutes-Seconds ↔ Decimal points

Examples	Operation	Display (Lower)
86°37' 34.2" ÷ 0.7 =	8603703	
123°45'6"	4 · 2 · · * ÷ 0 ·	123º45º6.
123°45'6" →123.7516667		123.7516667
2.3456 → 2°20'44"	2 · 3 4 5 6 = <u>Shift</u> ****	2°20°44.16

Fix, Sci, Norm, ROUND

You can change the number of decimal point, the number of significant digits, or the exponential notation criteria by pressing

ROUND

Press 1 (Fixed Decimal Setting)	: [Fix 0 ~ 9?] appears, specify the number of decimal places by pressing 0 ~ 9.
Press 2 (Scientific Notation)	: [Sci 0 ~ 9?] appears, specify the number of significant digits by pressing 0 ~ 9.
Press 3 (Exponential Notation)	: [Norm 1 ~ 2?] appears. Specify the exponential notation format by pressing 1 or 2.

- Norm 1 : Exponential notation is automatically used for integer values with more than 10 digits and decimal values with more than two decimal point.
- Norm 2 : Exponential notation is automatically used for integer values with more than 10 digits and decimal values with more than nine decimal point.

Example : $57 \div 7 \times 20 = ??$	Operation	Display(Lower)
At default setting. To fix 4 digits decimal point. (Internal calculation continues	57÷7 ×20= ************************************	162.8571429
16 digits)	57÷	162.8571
	7 =	8.1429
	×20=	162.8571
Perform internal rounding	57÷7=	8.1429
under the special decimal	Shift ROUND × 2 0	
setting.	Ξ	162.8580
To display by 6 digits scientific	MODE (C)	
notiation.		1.62858×10 ⁰²
Notation format by pressing	MODE () 3 1	162.858
1 to clear the FIX and Sci		
specifications.		

FUNCTIONAL SCIENTIFIC CALCULATIONS

- Press MODE 1 to enter COMP mode for performing functional scientific calculations.
- During the busy calculation, the calculator will display the message [PROCESSING].
- π = 3.14159265359
- e = 2.71828182846

Square, Root, Cube, Cube Root, Power, Power Root, Reciprocal and Pi

Example: $(\sqrt[3]{-2^2+5^3})^{-1} \times \pi = 0.621755977$

Operation	Display (Upper)	Display (Lower)
(Shift ¥_ (((-) 2)		
x^2 + 5 x^3)) x^3 Shift		
≞ =	$(^{3}\sqrt{(-2)^{2} + 5^{3}})$	0.621755977

Example: $(\sqrt[3]{2^6} + \sqrt[5]{243})^{-1} = 0.142857142$

Operation	Display (Upper)	Display (Lower)
(<u>Shift</u> ⊻_2∧6+5		
$\frac{1}{243}$	(³ √2^6 + 5 [×] √24	0.142857142

Logarithm, Natural Logarithm, Antilogarithm and Log_ab

Examples	Operation	Display (Lower)
e ⁻³ + 10 ^{1.2} + ln 3	Shift e^x (-) 3 + Shift 10^x	
= 16.99733128	$1 \cdot 2 + \ln 3 =$	16.99733128
$\log_3 81 - \log 1 = 4$	Alpha log_b 3 7 8 1)	
	- log 1 =	4.

Angle Unit Conversion

The calculator default angle unit setting is "Degree". If you need to change into "Radian" or "Grade", you can press More a number of times until you reach the setup screen:

Then press the corresponding number key 1, 2, or 3 for the angle unit you need. Then the display will show the **D**, **C**, or **C** indicator accordingly.

To convert an angle unit between "Degree", "Radian" and "Grade", you can press shift pee and the following display menu will be shown:

Then, press 1, 2, or 3 will convert the displayed value into the selected angle unit.

Example: Convert 180 degree into radian and grade $(180^{\circ} = \pi^{Rad} = 200^{Gra})$

Operation	Display (Upper)	Display (Lower)
MODE ② 2 (Radian mode) 1 8 0 Shift DRG+ 1 =	180 [°]	3.141592654
Moone € € € 3 (Grade mode)	180 ^{°°}	200.

Trigonometry Calculations

sin cos tan sin-1 cos-1 tan-1 hyp

- Before using the trigonometric functions (except hyperbolic calculations), select the appropriate angle unit (Deg/ Rad/ Gra) by MODE.
- $90^\circ = \frac{\pi}{2}$ Radians = 100 Grade.

Trigonometric (sin/ cos/ tan), Inverse Trigonometric (sin⁻¹/ cos⁻¹/ tan⁻¹) Functions

Examples	Operation	Display (Lower)
Degree Mode	₩₩€©©©1	0.
sin 53° 22' 12" = 0.802505182	sin 5 3 • · # 2 2 • · #	
	12=	0.802505182
cosec x = 1/sinx	$(\sin 4 5) x^{-1} =$	1.414213562
cosec 45° = 1.414213562		
tan ⁻¹ (5/6) = 39.80557109°	Shift tan ⁻¹ (5 ÷ 6 ≡	39.80557109
Radian Mode	Meese () () () () () () () () () () () () ()	0.
$\cos(\pi/6)^{\text{Rad}} = 0.866025403$	$\cos 6 x^{-1} \xrightarrow{\text{Shift}} \pi =$	0.866025403
0.785398163	<u>Shift</u> ;;(1÷√2	
$\cos^{-1}\frac{1}{\sqrt{2}} = 0.25 \pi$ (Rad)	Ξ	0.785398163
	Ans \div Shift π =	0.25

Hyperbolic (sinh/ cosh/ tanh), Inverse Hyperbolic (sinh⁻¹/ cosh⁻¹/ tanh⁻¹) Functions

Examples	Operation	Display (Lower)
sinh 2.5 - cosh 2.5 =	hyp sin 2 · 5 - hyp	
-0.082084998	cos 2 · 5 =	-0.082084998
cosh ⁻¹ 45 = 4.499686191	hyp Shift cos ⁻¹ 4 5 =	4.499686191

Permutation, Combination, Factorials and Random Number Generation

- Permutation : nPr = n! (n-r)!
- Combination : nCr = n! r!(n-r)!
- Factorial : x! = x(x-1)(x-2).....(2)(1)

Examples	Operation	Display (Lower)
10P3	1 0 Shift nPr 3 =	720.
₅ C ₂	5 Shift nCr 2 =	10.
5!	5 Shift <u>X</u> :=	120

Random Number Generation

Shift Rand : To generate a random number between 0.000 and 0.999

- Alpha Hand
 : To generate a random number between two specified positive integers. The entry is divided with ", ".
- Example: To generate a random number between 0.000 and 0.999; and generate an integer from range of 1 to 100

Operation	Display (Upper)	Display (Lower)
Shift Rand =	Rand	0.833*
Alpha i-Rand 1 7 1 0 0 =	i~Rand(1,100	83.*

* The value is only a sample, results will differ each time.

Least Common Multiple and Greatest Common Divisor ICM GCD

- LCM: Calculate the least common multiple among (maximum) three positive integers.
- GCD: Calculate the greatest common divisor among (maximum) three positive integers.

Examples	Operation	Display (Lower)
LCM(15, 27, 39) = 1755	LCM 1 5 7 2 7 7 3 9 =	1,755.
GCD(12, 24, 60) = 12	Shift GCD 1 2 2 4 9 6 0 = 1	12.

- ! Inputting a zero [0] value in a LCM/ GCD calculation, the calculator will skip the [0] value and continue the calculation with the non-zero integers.
- ! [Math ERROR] will be shown when decimal numbers or negative integers had been input.

Q_r Q↔r

Quotient & Remainder

- "Quotient" (Q) is the result of a division problem, "Remainder"(r) is the value left in an integer division problem.
- The calculated quotient value (Q) and remainder value (r) will be stored into memory variables "C" and "D" automatically assigned.
- Example: 35 ÷ 10 = 3 x 10 + 5 (3 is Quotient, 5 is Remainder)

Operation	Display (Upper)	Display (Lower)
Q=r 3 5 7 1 0 =	Qr(35,10	3. q
Shift Qr	Qr(35,10	5. r
+3=	Ans + 3	6.
RCL (recall quotient value)	C =	3.
RCL (recall remainder value)	D =	5.

- ! Only integers are allowed. [Math ERROR] will be shown when decimal numbers, non-integers (e.g. sin 60), or dividend value "zero [0]" had been input.
- ! Only Quotient Value (Q) can continue to be used for the next calculation or being stored into memory variables.

Pol(Rec(

Coordinate Conversion

- With polar coordinates, you can calculate and display θ within -180° < θ ≤ 180° range. (Same as Radian and Gradient)</p>
- After conversion, results will automatically assigned to memory variables X and Y.
- $\begin{array}{c} \underbrace{\texttt{Shift}}_{\text{res}} & \underbrace{\texttt{Pol}}_{r}: \text{ To convert rectangular coordinates } (x, y) \text{ to polar} \\ & \text{coordinates } (r, \theta); \text{ Press } \underbrace{\texttt{RC}}_{r} & \underbrace{\texttt{A}}_{r} \text{ to display the value} \\ & \text{of } r, \text{ or } \underbrace{\texttt{RC}}_{r} & \underbrace{\texttt{Y}}_{r} \text{ to display the value of } \theta. \end{array}$

Examples	Operation	Display (Lower)
With rectangular coordinate	ShiftPol(1 ,√3	
(x =1,y = $\sqrt{3}$). Find Polar	Ξ	2.
coordinate (r, $\boldsymbol{\theta}$) at degree	RCL	60.
mode		2.

Shiff Red: : To converts polar coordinates (r, θ) to rectangular coordinates(x, y); Press Red: ▲ to display the value of x, or Red: Y to display the value of y.

Examples	Operation	Display (Lower)
With Polar coordinate	Shift Rec(2 9 6 0 =	1.
(r=2, θ=60°). Find rectangular	RCL	1.732050808
coordinate (x,y) at degree mode	RCL	1.

! [Syntax ERROR] will be shown if is missed in the coordinate conversion calculation.

Absolute Value Calculation

Examples	Operation	Display (Lower)
sin(60-5) x (- π) =	Abs sin (6 0 - 5	
2.573442045) \times (-) Shift π =	
		2.573442045

STATISTICAL CALCULATIONS

[SD] [REG]

- To enter the standard deviation mode by pressing ^{MOE} (2), [SD] indicator lights up. If press ^{MOE} (3), you can enter the regression mode selection menu. [REG] indicator will be turned on.
- Before starting, be sure to clear the statistic memory by pressing Alpha CR 1 = OMCA.
- Perform the data input.
 - In SD mode, store the displayed data by pressing outs, pressing outs outs will input the same data twice.
 - In REG mode, store the x-data and y-data in the form of:
 x-data y-data and y-data and y-data input the same data twice.
 - Use 計广 for same data multiple entries. For example in SD mode, the data 20 has 8 times will press 20 产生 8 met .
 - Each time you press out to register the input, the number of data input up to that point is indicated on the display once (n = the number of input data).
 - Press ⑦ or ② key during or after data input can display the data value (x) and data frequency (Freq). Follow with the above example, press ③ will display [x1 = 20], and press ③ will display [Freq1= 8].

- To edit the stored data, input the new value during the display of that data value (x) after pressing ⁽⊙ or ⁽⊙ key, and then press ⁽≡) to confirm the edit. But, if you press [[]ma instead of ⁽≡), a new data value will be stored.
- Press (an delete the data during the display of that data value (x) after (>) or (>) key is pressed; and the sequence of the data which following the deleted data will be shifted up automatically.
- Press exc or exc hey to exit the data value and frequency display, then you can perform other calculation operations.
- Input data are stored in calculation memory. As the memory full, [Data Full] will be displayed and you cannot input or perform any calculation. Press @v., [perform or] key will display the options [EditOFF] or [ESC].

(Press 1):	Keep on inputting data without storing into the memory, and you are not able to display or edit any of the data you had input.
ESC (Press 2):	Just exit data input without registering the data into the memory.

- After changing into another mode or regression type (Lin, Log, Exp, Pwr, Inv, Quad), input data will be cleared.
- After finishing data entries, you can recall or calculate the statistical values.

Standard Deviation

- Press 2 to ender SD mode.
- Before starting, be sure to clear the statistical memory by pressing Alpha CLR 1 = 000CA.
- You can recall the following statistical value after input all data.

Value (Symbol)			
Summation of x (Σx)	Mean of x (x)		
Sum of Square (Σx^2)	Maximum value of x (maxX)		
Number of data sample (n)	Minimum value of x (minX)		
Population Standard Deviation of x ($x\sigma_n$)	Median value (med)		
Sample Standard Deviation of x ($x\sigma_{n1}$)			

Example: To calculate Σx², Σx, x̄, x σn , x σn-1, minX, maxX, and med of data: 75, 85, 90, 77, 77 in SD mode.

Operation	Display (Upper)	Display (Lower)
Alpha CLR 1 =	Stat clear	
7 5 Data 8 5 Data 9 0 Data 7		
7 Shift ; 2 Data	n =	5.
Shift SSUM 1 =	Σx ²	32,808.
Shift SSUM 2 =	Σx	404.
Shift S-VAR 1 =	x	80.8
Shift S-VAR 2 =	Xσn	5.741080038
Shift S-VAR 3 =	Xσn-1	6.418722614
Shift Setts 1 =	minX	75.
Shift PTS 2 =	maxX	90.
Shift S-PTS () 1 =	med	77.

Regression Calculations

Press MODE 3 to ender REG mode, then the follow screen options will be shown:

🗕 L	in L	og E	xp →
1	2	3	

Press 1, 2 or 3 for [Lin] = Linear regression, [Log] = Logarithmic regression, [Exp] = Exponential regression. If follow with $\stackrel{\texttt{MODE}}{\longrightarrow}$ or another regression options will be displayed as follow:

You can press 1, 2 or 3 for [Pwr] = Power regression, [Inv] = Inverse regression, [Quad] = Quadratic regression.

- Before starting, be sure to clear the statistical memory by pressing Alpha CLE 1 = OWCA.
- Input data in the form of x-data y-data . Use <u>shift</u> for same data multiple entries.
- Press Alpha O can delete the data during the display of data value after O or key is pressed.
- You can recall and use the following regression results:

Value	Symbol	Operation
Summation of all x ² value	Σx ²	Shift S-SUM 1
Summation of all x value	Σx	Shift S-SUM 2
Number of data sample	n	Shift S-SUM 3
Summation of all y ² values	Σy ²	Shift SSUM () 1
Summation of all y values	Σy	Shift SSUM () 2
Summation of all xy pairs	Σxy	Shift SSUM () 3
Mean of the x values	x	Shift S-VAR 1
Population Standard Deviation of x	xσn	Shift S-VAR 2
Sample Standard Deviation of x	xσ _{n-1}	Shift S-VAR 3
Mean of the y values	У	Shift S-VAR () 1
Population Standard Deviation of y	yσn	Shift S-VAR () 2
Sample Standard Deviation of y	yσ _{n-1}	Shift S-VAR 3
Regression coefficient A	A	Shift S-VAR () () 1
Regression coefficient B	в	Shift S-VAR () () 2
Minimum value of X	minX	Shift S-PTS 1
Maximum value of X	maxX	Shift S-PTS 2
Minimum value of Y	minY	Shift S-PTS () 1
Maximum value of Y	maxY	Shift S-PTS () 2

For non-quadratic regression			
Correlation coefficient r	r	Shift S-VAR () () 3	
Regression estimated value x	x	Shift S-VAR () () () 1	
Regression estimated value y	ŷ	Shift S-VAR () () () 2	
For Quadratic regression only			
Summation of all x ³ values	Σx ³	Shift SSUM () () 1	
Summation of all x ² y pairs	Σx ² y	Shift SSUM () () 2	
Summation of all x ⁴ values	Σx ⁴	Shift SSUM () () 3	
Regression coefficient C	с	Shift 5-VAR () () 3	
Regression estimated value x 1	λ ₁	Shift S-VAR () () () 1	
Regression estimated value x 2	λ ₂	Shift S-VAR () () () 2	
Regression estimated value y	ŷ	Shift S-VAR () () () 3	

Linear regression

- The Linear regression formula is in relation to two variables: y = A + Bx
- Example: By the following investment and yield table, calculate the linear regression (regression coefficient A, regression coefficient B) of capital investment verse yield, the correlation coefficient, the minimum value of investment, the maximum value of yield (%), and the yield percentage at 45 thousand unit of investment, and the investment unit at 180% yield.

Investment (thousand unit)	20	30	40	50	60
Yield (%)	120	126	130	136	141

Operation	Display (Upper)	Display (Lower)
MODE 3 1 (Lin Regression)		0.
Alpha CLR 1 = (Clear Stat. memory)	Stat Clear	
2 0 1 2 0 Partial 3 0 7 1 2 6 Partial 4 0 7 1 3 0 Partial 5 0 7 1 3 6 Partial 6 0		
7 1 4 1 Data	n =	5.
Shift SVAR (>) () (Coefficient A)	A	109.8
Shift SVAR () () 2 = (Coefficient B)	в	0.52
Shift S-VAR () () 3 = (Correlation Coefficient)	r	0.998523984

Operation	Display (Upper)	Display (Lower)
Shift Serts 1 = (Minimum Investment)	minX	20.
Shift SPTS (Maximum Yield)	maxY	141.
4 5 Shift S-VAR @ 2 = (Yield%)	45 ŷ	133.2
1805hift Star (Investment unit)	180 x	135.

Logarithmic, Exponential, Power, and Inverse Regression Formulas

- Logarithmic Regression : y = A + BInx
- Exponential Regression : y = Ae^{Bx} (Iny = InA + Bx)
- Power Regression : y = Ax^B (Iny = InA + BInx)
- Inverse Regression : y = A+Bx⁻¹

Quadratic Regression

- The quadratic regression is in relation to the formula: $y = A + Bx + Cx^2$
- Example: ABC company investigated the effectiveness of the advertisement expenses in coded units, the following data were obtained:

Advertisement expenses: x	18	35	40	21	19
Effectiveness: y (%)	38	54	59	40	38

Please calculate the correlation coefficient; use the regression to estimate the effectiveness (estimate the value of y) if the advertisement expenses x = 30, and estimate the advertisement expenses level (estimate the value of x₁, x₂) for the effectiveness y=50

Operation	Display (Upper)	Display (Lower)
MODE 3 (Quad Regression)		0.
	Stat dear	
1 8 7 3 8 Data 3 5 7 5 4 Data 4 0 7 5 9 Data 2 1		
9 4 0 Data 1 9 9 3 8 Data	n =	5.
30 Shift S-VAR $\bigcirc \bigcirc 3 \equiv (\hat{y} \text{ when } x = 30)$	30 ŷ	48.69615715
5 0 Shift S-VAR \Im \Im $1 = (\hat{x}_1 \text{ when } y = 50)$	50 x 1	31.30538226
50 Shift S-VAR $ \bigcirc \bigcirc 2 = (\hat{x}_2 \text{ when } y = 50) $	50 x ₂	-167.1096731

BATTERY REPLACEMENT

When the display characters are dim even a darker LCD contrast had been adjusted **OR** the following Low battery message appears on the display, replace the battery immediately.

LOW BATTERY

lease replace the lithium battery by the following procedures:

- . Press Shift OFF to power off the calculator.
- . Remove the screw which securely fix the battery cover in place.
- . Slide the battery cover slightly and lift it.
- . Remove the old battery with a ball pen or similar sharp object.
- . Load the new battery with the positive "+" side facing up.

Caution: Risk of explosion if battery is replaced by an incorrect type. Dispose of used batteries according to the instruction.

Electromagnetic interference or electrostatic discharge may cause the display to malfunction or the contents of the memory to be lost or altered. Should this occur, press the end the effect [] [] ""to restart the calculator

ADVICE AND PRECAUTIONS

- This calculator contains precision components such as LSI chips and should not be used in place subject to rapid variations in temperature, excessive humidity dirt or dust, or exposed to direct sunlight.
- The liquid crystal display panel is made of glass and should not be subjected to excessive pressure.
- When cleaning the device do not use a damp cloth or a volatile liquid such as paint thinner. Instead, use only a soft, dry cloth.
- Do not under any circumstances dismantle this device. If you believe that the calculator is not functioning properly, either bring or mail the device together with the guarantee to the service representative of a Canon business office.
- Never dispose the calculator improperly such as burning; it can create risks of personal injury or harm. You are suggested to dispose this product according to your national law.
- Do replace the battery once every two years even it is not used frequently.

A Battery Cautions!

- Keep the battery out of reach of children. If the battery is swallowed, contact a doctor immediately.
- Misuse of battery may cause leakage, explosion, damages or personal injury.
- Don't recharge or disassemble the battery, it could cause a short circuit.
- Never expose the battery to high temperatures, direct heat, or dispose by incineration.
- Never leave a dead battery in the calculator as the dead battery may leak and cause damage to the calculator.
- Continue using the calculator as the battery is low can cause improper operation and the stored memory may be corrupted or lost completely. Keep the written records of important data all the time; and replace the battery as soon as possible.

SPECIFICATIONS

Power Supply : S Power Consumption : D	Solar cell and a single Alkaline battery (LR44 x 1) D.C. 1.5V / 0.1mW
Battery Life : A	Approximately 3 years
(Base on 1 hour of operation per day)
Auto Power Off : A	Approx. 7 minutes
Usable Temperature : (0 ~ 40 ℃ (32°F~ 104°F)
Size : 165 (L) x 80 (W)	x 14 (H) mm (body)
168 (L) x 86.3 (W	/) x 17.8 (H) mm (with case)
6-1/2" (L) x 3-5/3	32" (W) x 35-64" (H) (body)
6-39/64" (L) x 3-	25/64" (W) x 45/64" (H) (with case)
Weight : 89 g (3 oz) (bo	ody)
124 g (4.2 oz)	(with case)
* Specifications are su	bject to change without notice.

© CANON ELECTRONIC BUSINESS MACHINES (H.K.) CO., LTD. 2015 PRINTED IN CHINA

E-IE-480